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Foreword

How many children dream of one day becoming risk managers? | very much doubt little Carol
Jenkins, as she was called then, did. She dreamt about being a wild white horse, or a mermaid
swimming with dolphins, as any normal little girl does. As | start crunching into two kilos of
Toblerone that Carol Alexander-Pézier gave me for Valentine’s day (perhaps to coax me into
writing this foreword), | see the distinctive silhouette of the Matterhorn on the yellow package
and | am reminded of my own dreams of climbing mountains and travelling to distant planets.
Yes, adventure and danger! That is the stuff of happiness, especially when you daydream as a
child with a warm cup of cocoa in your hands.

As we grow up, dreams lose their naivety but not necessarily their power. Knowledge makes
us discover new possibilities and raises new questions. We grow to understand better the con-
sequences of our actions, yet the world remains full of surprises. We taste the sweetness of
success and the bitterness of failure. We grow to be responsible members of society and to
care for the welfare of others. We discover purpose, confidence and a role to fulfil; but we also
find that we continuously have to deal with risks.

Leafing through the hundreds of pages of this four-volume series you will discover one
of the goals that Carol gave herself in life: to set the standards for a new profession, that of
market risk manager, and to provide the means of achieving those standards. Why is market
risk management so important? Because in our modern economies, market prices balance the
supply and demand of most goods and services that fulfil our needs and desires. We can hardly
take a decision, such as buying a house or saving for a later day, without taking some market
risks. Financial firms, be they in banking, insurance or asset management, manage these risks
on a grand scale. Capital markets and derivative products offer endless ways to transfer these
risks among economic agents.

But should market risk management be regarded as a professional activity? Sampling the
material in these four volumes will convince you, if need be, of the vast amount of knowledge
and skills required. A good market risk manager should master the basics of calculus, linear
algebra, probability — including stochastic calculus — statistics and econometrics. He should be
an astute student of the markets, familiar with the vast array of modern financial instruments
and market mechanisms, and of the econometric properties of prices and returns in these
markets. If he works in the financial industry, he should also be well versed in regulations and
understand how they affect his firm. That sets the academic syllabus for the profession.

Carol takes the reader step by step through all these topics, from basic definitions and
principles to advanced problems and solution methods. She uses a clear language, realistic
illustrations with recent market data, consistent notation throughout all chapters, and provides
a huge range of worked-out exercises on Excel spreadsheets, some of which demonstrate
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analytical tools only available in the best commercial software packages. Many chapters on
advanced subjects such as GARCH maodels, copulas, quantile regressions, portfolio theory,
options and volatility surfaces are as informative as and easier to understand than entire books
devoted to these subjects. Indeed, this is the first series of books entirely dedicated to the
discipline of market risk analysis written by one person, and a very good teacher at that.

A profession, however, is more than an academic discipline; it is an activity that fulfils
some societal needs, that provides solutions in the face of evolving challenges, that calls for a
special code of conduct; it is something one can aspire to. Does market risk management face
such challenges? Can it achieve significant economic benefits?

As market economies grow, more ordinary people of all ages with different needs and risk
appetites have financial assets to manage and borrowings to control. What kind of mortgages
should they take? What provisions should they make for their pensions? The range of invest-
ment products offered to them has widened far beyond the traditional cash, bond and equity
classes to include actively managed funds (traditional or hedge funds), private equity, real
estate investment trusts, structured products and derivative products facilitating the trading of
more exotic risks — commodities, credit risks, volatilities and correlations, weather, carbon
emissions, etc. — and offering markedly different return characteristics from those of tradi-
tional asset classes. Managing personal finances is largely about managing market risks. How
well educated are we to do that?

Corporates have also become more exposed to market risks. Beyond the traditional expo-
sure to interest rate fluctuations, most corporates are now exposed to foreign exchange risks
and commaodity risks because of globalization. A company may produce and sell exclusively
in its domestic market and yet be exposed to currency fluctuations because of foreign com-
petition. Risks that can be hedged effectively by shareholders, if they wish, do not have to
be hedged in-house. But hedging some risks in-house may bring benefits (e.g. reduction
of tax burden, smoothing of returns, easier planning) that are not directly attainable by the
shareholder.

Financial firms, of course, should be the experts at managing market risks; it is their métier.
Indeed, over the last generation, there has been a marked increase in the size of market risks
handled by banks in comparison to a reduction in the size of their credit risks. Since the 1980s,
banks have provided products (e.g. interest rate swaps, currency protection, index linked loans,
capital guaranteed investments) to facilitate the risk management of their customers. They
have also built up arbitrage and proprietary trading books to profit from perceived market
anomalies and take advantage of their market views. More recently, banks have started to
manage credit risks actively by transferring them to the capital markets instead of warehousing
them. Bonds are replacing loans, mortgages and other loans are securitized, and many of the
remaining credit risks can now be covered with credit default swaps. Thus credit risks are
being converted into market risks.

The rapid development of capital markets and, in particular, of derivative products bears
witness to these changes. At the time of writing this foreword, the total notional size of all
derivative products exceeds $500 trillion whereas, in rough figures, the bond and money mar-
kets stand at about $80 trillion, the equity markets half that and loans half that again. Credit
derivatives by themselves are climbing through the $30 trillion mark. These derivative markets
are zero-sum games; they are all about market risk management — hedging, arbitrage and
speculation.

This does not mean, however, that all market risk management problems have been
resolved. We may have developed the means and the techniques, but we do not necessarily
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understand how to address the problems. Regulators and other experts setting standards and
policies are particularly concerned with several fundamental issues. To name a few:

1. How do we decide what market risks should be assessed and over what time horizons?
For example, should the loan books of banks or long-term liabilities of pension funds
be marked to market, or should we not be concerned with pricing things that will not
be traded in the near future? We think there is no general answer to this question about
the most appropriate description of risks. The descriptions must be adapted to specific
management problems.

2. In what contexts should market risks be assessed? Thus, what is more risky, fixed or
floating rate financing? Answers to such questions are often dictated by accounting
standards or other conventions that must be followed and therefore take on economic
significance. But the adequacy of standards must be regularly reassessed. To wit,
the development of International Accounting Standards favouring mark-to-market and
hedge accounting where possible (whereby offsetting risks can be reported together).

3. To what extent should risk assessments be ‘objective’? Modern regulations of finan-
cial firms (Basel II Amendment, 1996) have been a major driver in the development of
risk assessment methods. Regulators naturally want a ‘level playing field” and objective
rules. This reinforces a natural tendency to assess risks purely on the basis of statisti-
cal evidence and to neglect personal, forward-looking views. Thus one speaks too often
about risk ‘measurements’ as if risks were physical objects instead of risk ‘assessments’
indicating that risks are potentialities that can only be guessed by making a number of
assumptions (i.e. by using models). Regulators try to compensate for this tendency by
asking risk managers to draw scenarios and to stress-test their models.

There are many other fundamental issues to be debated, such as the natural tendency to focus
on micro risk management — because it is easy — rather than to integrate all significant risks and
to consider their global effect — because that is more difficult. In particular, the assessment and
control of systemic risks by supervisory authorities is still in its infancy. But | would like to
conclude by calling attention to a particular danger faced by a nascent market risk management
profession, that of separating risks from returns and focusing on downside-risk limits.

It is central to the ethics of risk managers to be independent and to act with integrity. Thus
risk managers should not be under the direct control of line managers of profit centres and
they should be well remunerated independently of company results. But in some firms this
is also understood as denying risk managers access to profit information. | remember a risk
commission that had to approve or reject projects but, for internal political reasons, could
not have any information about their expected profitability. For decades, credit officers in
most banks operated under such constraints: they were supposed to accept or reject deals a
priori, without knowledge of their pricing. Times have changed. We understand now, at least
in principle, that the essence of risk management is not simply to reduce or control risks but
to achieve an optimal balance between risks and returns.

Yet, whether for organizational reasons or out of ignorance, risk management is often con-
fined to setting and enforcing risk limits. Most firms, especially financial firms, claim to have
well-thought-out risk management policies, but few actually state trade-offs between risks and
returns. Attention to risk limits may be unwittingly reinforced by regulators. Of course it is not
the role of the supervisory authorities to suggest risk—return trade-offs; so supervisors impose
risk limits, such as value at risk relative to capital, to ensure safety and fair competition in
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the financial industry. But a regulatory limit implies severe penalties if breached, and thus
a probabilistic constraint acquires an economic value. Banks must therefore pay attention to
the uncertainty in their value-at-risk estimates. The effect would be rather perverse if banks
ended up paying more attention to the probability of a probability than to their entire return
distribution.

With Market Risk Analysis readers will learn to understand these long-term problems in a
realistic context. Carol is an academic with a strong applied interest. She has helped to design
the curriculum for the Professional Risk Managers’ International Association (PRMIA) quali-
fications, to set the standards for their professional qualifications, and she maintains numerous
contacts with the financial industry through consulting and seminars. In Market Risk Analy-
sis theoretical developments may be more rigorous and reach a more advanced level than in
many other books, but they always lead to practical applications with numerous examples in
interactive Excel spreadsheets. For example, unlike 90% of the finance literature on hedging
that is of no use to practitioners, if not misleading at times, her concise expositions on this
subject give solutions to real problems.

In summary, if there is any good reason for not treating market risk management as a sepa-
rate discipline, it is that market risk management should be the business of all decision makers
involved in finance, with primary responsibilities on the shoulders of the most senior man-
agers and board members. However, there is so much to be learnt and so much to be further
researched on this subject that it is proper for professional people to specialize in it. These
four volumes will fulfil most of their needs. They only have to remember that, to be effective,
they have to be good communicators and ensure that their assessments are properly integrated
in their firm’s decision-making process.

s
Jacques Pézier



Preface to Volume IV

Financial risk management is a relatively new discipline. It is driven internally by the need
for optimal returns on risk-based capital and, ultimately, by the survival of the firm. External
drivers include clients, who are typically risk averse, and industry regulators, whose objectives
are to protect investors and to promote competition, although their ultimate concern is for
financial stability in the global economy. In recent years market volatility has been rising
as trading focuses on increasingly complex instruments whose risks are extremely difficult
to assess. The origins of financial securities, futures and options go back several centuries,
yet we are only just beginning to understand how to quantify the risks of complex financial
products realistically, even though this makes all the difference between success and failure in
the financial industry.

I liken the risk management profession as it stands today to that of medicine in the eigh-
teenth century. Until this time general ill health in the population and continual outbreaks
of uncontrolled diseases were met with ignorance, masked by mumbo-jumbo, in the med-
ical profession. As a result average life expectancy was short and, for most, the quality of
life was poor. But in the nineteenth century a number of comprehensive texts such as Gray’s
Anatomy* began to educate the medical profession. Such is the knowledge we have acquired
during the past two centuries that nowadays even a general practitioner must spend many years
in training. Modern medical training is very demanding, but as a result people live longer and
healthier lives.

Turmoil in the banking industry following a collapse of credit markets began soon after
I finished writing the Market Risk Analysis series. In September 2008 the Treasury-Eurodollar
(TED) spread (which in normal markets is about 5-10 basis points) exceeded 300 basis points,
and it remains above 200 basis points at the time of writing. The value of stocks around the
entire globe has fallen drastically and rapidly, reminiscent of the world stock market crash of
1929. To give the reader some idea of the extent of the losses: between the end of August
and mid November 1929 the benchmark Dow Jones Industrial Average Index of 30 US blue
chip stocks lost almost 50% of its value; from the end of April 2008 until the end of October
2008 it had lost almost 40% of its value. The US markets are not falling as much as stock
markets in most other countries and the dollar is stronger now than it has been for many years.
Several exchanges have suspended trading on more than one occasion, and even then several
markets have crashed by more than 10% in a single day. The currencies of some emerging

1 See http://en.wikipedia.org/wiki/Gray’s_Anatomy.
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markets, such as the Korean wan, have plummeted in value against the US dollar. Markets in
Europe have fallen more than 50% since the end of April, and some experts say further falls
are imminent at the time of writing.

Why is this happening? And what is the likely effect on the financial system? These ques-
tions are not easy to answer, as the crisis is still ongoing at the time of writing. All the reasons
for, and effects of, a catastrophe are usually revealed only after the event.

SUMMARY OF THE 2008 BANKING CRISIS

There is a trigger for all financial crises, and in this case the first crack appeared with the sub-
prime mortgage crisis in the US. During the years 2004-2006 stock markets across the globe
surged as the cost of credit reached all-time lows. New ways of securitizing loans meant that
counterparty credit quality mattered little to the salesman on commission. European banks,
and investors in countries where yields had been extremely low for years, flocked to buy
collateralized debt obligations (CDO) and similar new products. The main sellers were the five
largest investment banks: Goldman Sachs, Morgan Stanley, Merrill Lynch, Lehman Brothers
and Bear Stearns. Even retail banks began to rely on securitizing their loans and short-term
funding via the interbank market rather than on a deposit base.

Whenever there is uncertainty in a free market economy, this promotes a cycle in which
optimism can lead to exuberance, followed by doubt and finally panic. The basic principle
underlying the CDO is sound — after all, if the senior tranche of a mortgage-backed secu-
rity corresponds to two-thirds of the whole and the recovery rate on defaulting mortgages is
50%, it would only be affected if more than two-thirds of the creditors defaulted! So we had
reason to be optimistic in the mid 2000°s and there was a strong market for these new yield-
enhancement vehicles. A fundamental problem was that their pricing lacked transparency.
Because of the very considerable pricing model risk — the mark-to-model prices being cru-
cially dependent on the assumptions made — doubts began to infiltrate the exuberance. And,
as doubt turned to panic, the market dried up, so market prices became even more unreliable
than the model prices. Given the mark-to-market accounting framework used by banks, a huge
liquidity risk appeared in the trading book, and this was not covered by the bank’s regulatory
capital.

As liquidity fell out of the CDO market, banks turned to the interbank market to fund their
liquidity gap. Because cash-rich banks demanded such high levels of collateral guarantees,
other banks — and hedge funds, some of which were very highly leveraged — had great dif-
ficulty rolling over credit lines. Hedge funds were hit particularly hard. As the bull market
turned, the values of their investments began to fall, and they had less collateral than usual to
meet these larger guarantees. They have been forced to liquidate investments to meet collat-
eral calls, increasing the downward pressure on stocks. The result was a crash in market prices
across the globe during October 2008, with emerging stock markets and currencies being the
worst hit, as US and European hedge funds liquidated their holdings in emerging markets.

The full extent of the current financial crisis first began to unfold in September 2008, with
the failure of three of the five largest investment banks and of the US insurance giant AIG
which, like the huge financial conglomerates Fannie Mae and Freddie Mac a few months
before, was bailed out by the US government. Speculative short selling on the last two major
investment banks, Goldman Sachs and Morgan Stanley, spread to the many retail banks in
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various countries that had been actively operating in capital markets since the repeal of
the Glass-Steagall agreement in 1999,% either buying CDOs or using proprietary trading in
derivatives to boost profits. All three Icelandic banks defaulted, and with this some savers
in other countries lost their capital. Then volatility in banking sector stocks spilled over into
energy, commaodities and related stocks, on fears of a falling demand for oil and raw materials
with the onset of a global recession.

Eventually governments responded by increasing deposit protection, lowering interest rates
and providing additional liquidity. As a last resort, schemes for partial nationalisation of
banks have been proposed — schemes that include caps on the remuneration of executives
and traders — along with bans on short selling to attempt to stem the slide in stock prices.
Regulators disregarded anti-monopoly laws as distressed banks were taken over by large cash-
rich retail banks. The banking sector has now moved towards oligopolistic competition, with
a few huge conglomerates such as JP Morgan dominating the markets. Given the unthinkable
threat of a collapse of the global banking system in which the general public lose their savings,
most governments have now raised deposit insurance ceilings.

CAUSES AND EFFECTS OF THE CRISIS

A catalyst for this particular crisis was Alan Greenspan’s policy of promoting US growth
by keeping US interest rates low. After the Russian crisis in 1998 US treasury rates were
also brought down, but as the market recovered interest rates were raised to prevent inflation
increasing. During the technology crash in 2001 and 2002 US interest rates were brought
down to about 1%, which encouraged increased consumption and promoted US exports, and
thus revived the US economy. After the recovery started Greenspan did not raise interest rates
quickly enough. There were no fears of inflation. Yet, every time interest rates are held too
low for too long, it creates a bubble. This time the bubble was caused by an ‘easy credit’ envi-
ronment, culminating in the ‘credit crunch” which marked the beginning of the 2008 financial
crisis.

The main factor underlying this financial crisis is the intrinsic instability in the banking
system resulting from the lack of unified and intelligent principles for the accounting, regula-
tion, and risk management of financial institutions. These principles have evolved separately
in each framework, each without sufficient regard for the other two disciplines.

One of the major derivatives markets is driven by the different accounting frameworks used
by banks and their clients. Differences between the principles of cost (or value) accounting
used by non-financial companies on the one hand, and the mark-to-market (MtM) accounting
used by banks in their trading books on the other hand, drives the market for interest rate
swaps and their derivatives. Of course, companies will try to finance themselves by issuing
bonds, but short term liquidity gaps are financed by taking loans from banks. Banks prefer to
lend at a floating rate because this has very low risk in MtM accounting. On the other hand,

2 The Glass-Steagall agreement of 1933 was named after the two US senators who proposed it in response to the 1929 stock market
crash. Under this agreement retail banks and commercial banks were depository taking institutions, and only investment banks traded
in capital markets, to create secondary markets for the bond issues they underwrote. The agreement was repealed in 1999, allowing
retail and commercial banks to trade in capital markets, but investment banks were still not allowed to take deposits. The net effect of
this asymmetry was that retail and commercial banks were better funded than investment banks. In September 2008 Goldman Sachs
and Morgan Stanley were granted the status of ‘bank holding companies’, allowing them to take deposits. So, the distinction between
retail and commercial banks on the one hand, and investment banks on the other, is disintegrating.
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floating rate notes and bonds have high risk in cost accounting, so companies prefer to take
loans at fixed rates, which have low risk in cost accounting. Thus, banks double their business,
issuing low risk notes and then offering interest rate swaps for floating into fixed rates. And,
since fixed rates have high risk in MtM accounting, they use derivatives on interest rate swaps
to hedge.

In relation to the underlying securities markets and in relation to world gross domestic
product (GDP) the volume of financial derivatives traded is huge. At the end of 2007 the total
notional outstanding on bond issues was about $80 trillion and the value of company stocks
was about $40 trillion. Relatively few stock and bond holders hedge their positions because
securities are often held by investors that hope to make a profit over the long term. Thus
the notional size of the derivatives market required for investors to hedge is a small fraction
of $120 trillion. Many companies involved with importing and exporting goods hedge their
exposures to exchange rate fluctuations, and to rising interest rates. The size of these exposures
is related to the value of all goods produced in the world economy. World GDP was about $75
trillion in 2007, so corporate hedging activities should amount to some small fraction of this.
Thus the two hedging activities should result in a derivatives market with notional size being
just a small fraction of $200 trillion. However, the total notional size of derivatives markets in
2007 was about $600 trillion.

Before the crisis, the daily average trading volume (DATV) on derivatives exchanges was
about $2 trillion. Foreign exchange forward contracts had DATV of between $2 and $3 tril-
lion, and other over-the-counter (OTC) derivatives trading amounted to about $1 trillion per
day. Most of these contracts had a very fast turnover rate — in fact, the vast majority of
futures contracts are held for just a few days. Average daily production of goods and ser-
vices, as measured by world GDP, was about $0.3 trillion per day. So the DATV on derivatives
was about twenty times greater than daily world GDP. Very approximately, about one-tenth
of the volume traded is used for hedging. The remaining trades must be for speculative
purposes.

Speculative traders include proprietary traders, hedge funds, companies making bets and
day traders. They trade in capital markets for the purpose of making profits over a short-term
horizon, which distinguishes them from investors, who buy-and-hold. Approximately half of
the speculators in the derivatives markets are proprietary traders in banks.

When interest rates are cut banks turn to the capital markets to make profits by increasing
the volume of their speculative trading. As a result, huge bonuses are often paid to successful
proprietary traders and their managers. But why should banks bet with the money of their
savers and their clients? Apart from the possibility that they may be better at speculation
than ordinary investors, because of better information or cheaper access to markets,® banks
need to create a liquid market in order to price derivatives. Their market makers provide OTC
derivatives, making money on the bid-ask spread, quoting prices that are based on the cost of
hedging. So they need a liquid market for their hedging instruments, which include futures
and options. We absolutely need speculative trading in options, because the volume of trad-
ing creates a market where there is no reliable theoretical price. A case in point is the CDO
market. But we do not necessarily need speculative trading on futures, because we know how
to calculate the fair price of a futures contract. One reason why there was approximately $25
trillion of speculative trades on futures last year is that senior managers and proprietary traders

3 For instance, Salomon Brothers used to make the market for US junk bonds, so they could see the entire market and take positions
accordingly.
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The Vix Volatility Index, January 1990 — October 2008

are being driven by greed to acquire huge bonuses. This is why the recent nationalisation deals
for UK banks has included a clause for limiting remuneration.

Proprietary trading by banks increases liquidity, but it may also increase volatility. Tra-
ditionally, banks are short volatility because investors want to be long volatility — it is an
excellent diversification instrument. If there is no liquid market for volatility, banks will
simply overcharge on the spread, which is one of the reasons why implied volatility usu-
ally exceeds historical volatility. The markets for variance swaps on European and US stock
indices have been surging, making pure volatility a new, liquid asset. However, the informed
banks would have temporarily stopped writing variance swaps at the onset of the banking cri-
sis in mid September 2008, leaving only those in ignorance of the huge sums that could be
lost on these positions to take the knock. Near the end of October 2008 the Vix jumped up
to almost 80%, its highs during previous crises rarely exceeding 40%, as shown in the figure

above, so the banks that sold variance swaps in September 2008 could have lost millions of
dollars.*

WHAT COULD (OR SHOULD) HAPPEN NOW?

As this book goes to press many large banks are cutting down on their proprietary trading
businesses, reducing the number of employees and the bonuses that are paid. If banks and
their employees no longer have the incentive to use proprietary trading to increase profits, or
if their trading is curtailed by regulators or governments, the size of the current OTC deriva-
tives markets will dramatically reduce. Yet banks will always seek new ways to increase their
profits. So new, unregulated and (probably) misunderstood markets, like the CDO market, will
still be created.

Very often, the demand for and supply of derivatives arises from differences in accounting
rules. For instance, the swaps market, which is the largest of all derivatives markets, is driven

4 Vix is the implied volatility index of the S&P 500 index.
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by differences between cost and market-to-market accounting. As long as we have no unified
accounting framework for all market participants, new derivatives markets will be created.
However, given the time it has taken to agree on accounting standards in 1AS39,° we should
not expect much change in the near future.

This huge casino, in which many times world GDP is bet every year, has proved impossible
to regulate. Regulators always respond to crises by tightening rules and increasing the mini-
mum level of risk capital to be held by banks. But this exacerbates the problem, since the only
way out of the current crisis is to create liquidity. Injecting taxpayers’ money into the capital
markets is only a temporary solution; what is needed now is a complete reform of financial
regulations. This does not necessarily mean tighter control on market operations, or increases
in the minimum level of risk capital held by banks. Indeed, there may be government pressure
to loosen regulation in order to establish a leading financial centre.

The new Basel Accord, which took eleven years to develop, failed to control the sys-
temic risk in financial markets. And the reason it has failed is that regulators are too fixed
on detailed calculations of value at risk in their *bottom-up’ regulatory capital framework.
That is, they have been focusing on micro-managing the banks in their jurisdiction, and not
on macro-financial decision making under uncertainty. What may be needed now, in addition
to curtailing the proprietary trading by banks, is a top-down, differential system of capital
charges, with the major banks that pose the greatest systemic threat holding proportionally
higher capital reserves than minor banks.

This last spectacular failure in financial markets calls for a revision of the global banking
system. This does not necessarily mean the wholesale nationalisation of banks, or even a
return to socialist principles. That would indeed be an admission of failure, especially for
Russia and the Eastern European countries that have only recently embraced capitalism. Free
capital markets are essential to globalisation, and globalisation is essential for the health of the
world’s economy. To prevent the next crisis being even more critical that this one, an urgent
reform of the accounting, regulation and risk management principles that underpin financial
markets is required.

After each market crash — e.g. following the burst of the technology bubble in the early part
of this decade, and following the Russian debt default in 1998 — governments try to promote
growth by cutting interest rates and by injecting capital into the financial system. And, to be
effective, each time they have to inject more capital and introduce more drastic cuts in interest
rates than before. This is because the banking system is unstable, and markets have recovered
only by sowing even deeper seeds for the next crisis. Unless drastic reforms of the system are
made in the near future, even more drastic action will be required to resolve the next crisis,
when it comes.

And what about financial risk management, and market risk management in particular —
what reforms are needed now? A fundamental distinction must be drawn between risk man-
agers and risk analysts. A good risk manager should be adept at making decisions under
uncertainty, and for this he needs to be well-informed about the basic economic principles
that underpin price formation in capital markets. And risk managers, like all managers, should
be held accountable for their actions. Unfortunately, the opposite is usually the case. If a bank
encounters problems due to bad management, then senior executives and directors can leave
to join another firm, often with guaranteed bonuses on top of a six-figure salary.

5 These standards were developed by the International Accounting Standards Board. See http://www.iash.org.
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Risk analysts and financial engineers — for whom these books are designed — use mathe-
matical models to measure risk, and to price illiquid products using arbitrage pricing theory.
The assumptions made by these models need constant testing and refining, so that superior
models can be developed. With greater confidence in mark to model prices, and in portfolio
risk assessment, it may be easier to stem the panic when the next crisis comes. Clearly, bet-
ter education in quantitative risk analysis is the key to developing effective risk models and
accurate pricing models for financial institutions.

Each financial crisis has a disastrous effect on the global economy, so the lives of ordinary
people are adversely affected. | believe these crises can and will be avoided, but only when
financial risk managers acquire the knowledge, skills and framework they really need to oper-
ate effectively in their profession. The recent crisis has shown that there is an urgent need
for growth and change in the entire financial industry and in the financial risk management
profession in particular.

An important and fundamental change must be to start educating risk analysts properly, so
that their managers really understand the risks that banks and other financial institutions are
taking, as far as this is possible. Risk is a mathematical concept: it is a measure of uncertainty.
So risk managers or, at least, their trusted analysts, need to understand mathematics first,
before they can even begin to understand risk.

There are two international financial risk management associations, the Professional Risk
Managers’ International Association (PRMIA) and the Global Association of Risk Pro-
fessionals (GARP).® These associations provide entry-level qualifications for financial risk
management. The PRM qualification is at a higher level than the FRM or the Associate PRM,
but even the four exams for the full PRM qualification can be passed with only one year of
part-time study.

In the UK medical doctors must undergo a minimum of 5 years’ full-time study, and to
rise to senior positions they must take tough examinations every few years. Health risk man-
agement is so important to the economy that our National Health Service offers a regular
programme of free vaccinations and free screenings for cancer, heart disease, and so forth.
Why, then, have banks been treating financial risk management so casually, placing inap-
propriately qualified people in senior positions and taking less than adequate care over the
education of their junior staff? Financial risk management is such a vast subject that to learn
what we need to provide effective risk management in today’s complex and volatile markets
should take many years of full-time study, just as it does for medical doctors.

ABOUT THE MARKET RISK ANALYSIS SERIES

Sitting at my desk, writing this preface — the very last item on the agenda of the Market Risk
Analysis series — | feel a huge sense of relief that the punishing work schedule | have been
setting myself has nearly reached its conclusion. When | started out, five years ago, | did not
intend to write four books. | just wanted to write one book: a book that describes all that a
market risk analyst should know about building market value-at-risk (VaR) models; to explain
everything in great detail so that readers came away with something they could actually use to
educate themselves, without the need for formal courses. | also wanted to provide numerous
practical examples, showing how to implement the theory that | cover in all types of financial

6 See www.prmia.org and www.garp.com.
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markets. That is why | put every idea that | possibly could into a simple, interactive Excel
workbook, with real financial data on equities, currencies, interest rates and commodities; this
way, readers experience the idea ‘hands-on’, right from the start, and | truly believe this is a
fantastic learning tool for an intelligent, self-motivated reader.”

I soon realized that in rising to this challenge | had set myself a very considerable task.
To fully understand all aspects of market VaR as it is (or should be) used by major financial
institutions today, the analyst needs to understand a good deal of mathematics, especially
statistics and financial econometrics, as well as knowing about financial markets, the type of
instruments traded in these markets, how to price them, why we hedge them and how to hedge
them properly. It is a huge agenda — and this is just for the market risk analyst! As a result,
there are numerous references to the earlier volumes of Market Risk Analysis in this book.

Please do not buy these books if you think you can be a financial risk analyst without under-
standing much mathematics. It is important to distinguish between risk management and risk
analysis. Whilst | very often refer to risk management, this book series is called Market Risk
Analysis, because it focuses on the mathematical modelling of market risks. A financial risk
manager requires the same skills as any business manager, including a capacity for leadership,
some knowledge of economics and of psychology and a superficial, not necessarily detailed,
understanding of the technical side of the business. By contrast, the financial risk analyst’s
profession requires a very broad and in-depth knowledge of financial markets, finance theory,
mathematics, statistics and econometrics.

One of the first developments in the financial risk management profession was to categorize
risks into three broad types, labelled market, credit and operational risk. This was convenient
because quite different techniques are used to assess each type of risk. My definition of market
risk is the risk resulting from adverse moves in prices of liquid financial instruments. Market
risk therefore includes credit spread risk, just as it includes interest rate risk. The probability
of default affects credit spreads, so credit risk affects spread risk. But the scope of these books
does not extend to credit risk analysis, just as monetary policy affects base interest rates but
the theory of economic policy decision making is not within the scope of these books.

This book series is not, at least primarily, about the risk management of financial markets; it
is called Market Risk Analysis, because it deals with market risk in the narrow sense, defined
above, and when risk management (as opposed to risk analysis) is discussed it is market risk
management, not credit or operational risk management. In particular, please do not buy these
books if you want to learn about credit risk analysis, or about credit risk management, or about
collateralized debt obligations and counterparty default. Neither should you buy these books
if you want everything in one volume. At this level of detail, such a book would be more than
1500 pages long, and not easy to carry around with you. Also, there are separate markets for
the earlier volumes in the series; not everyone in the finance industry wants to learn how to
assess risk in a VaR framework.

Why did | write this book? To answer this fully I should first explain why | changed my
agenda and wrote the precursors, starting with Volume I: Quantitative Methods in Finance.
| started teaching mathematics to non-mathematicians over 20 years ago, and have con-
tinued to develop materials that allow intelligent students with relatively little quantitative
background to undertake a fast-track course in mathematics that is oriented towards their spe-
cialism. For the past five years | have been teaching a course in Quantitative Methods for

1 have constructed 140 Excel workbooks for the examples, figures, tables and case studies in this series. That is about 1500
spreadsheets in total. Phew!
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Finance to master’s degree students at the ICMA Centre. In 10 weeks | need to bring students
up to scratch in Excel as well as equipping them with the basic knowledge of calculus, linear
algebra, statistics, econometrics and numerical methods, and how these subjects are used for
financial applications. So each year | teach finance through mathematical applications in a very
pedagogical way, sometimes in a single class with over 200 students having disparate quan-
titative backgrounds. I decided to write the first volume with two purposes in mind — as a set
text for my Quantitative Methods for Finance course and similar courses (there are plenty) and
to provide a fast-track route to intelligent, independent readers who want a succinct, targeted
and pedagogical exposition of the mathematical knowledge required by a market risk analyst.

What about Volume II: Practical Financial Econometrics? When | was young | trained as
an algebraist, developed only a passing interest in game theory, unfortunately, and at the time
that my work focused on econometrics (because | had to teach it) | was drawn into financial
econometrics by consultancy work. Thus, during the 1990s and well before most real aca-
demic econometricians discovered this veritable motorway into finance, | was accidentally
positioned as one of the better known financial econometricians in the industry. Then | wrote
Market Models — but this book is now over seven years old — so why not write a more rigorous,
complete and up-to-date financial econometrics text for the Market Risk Analysis series?
Volume Il is primarily aimed at market risk professionals working in portfolio management
or for hedge funds, students on Finance master’s courses, and academic researchers. But a
secondary purpose is that Volume 11 is required knowledge for all serious market risk ana-
lysts, and most of the material covered is pre-requisite for readers of this book, at least if they
want to gain an in-depth understanding of advanced VaR models.

During the past few years | have developed research interests in continuous time finance:
in volatility theory and in option pricing and hedging in particular. Volatility theory is a com-
plex subject, and there are only a few texts in this area that are accessible to non-specialists.
Believing that I could write a comprehensive and clear exposition of volatility theory, option
pricing and hedging, | decided to augment the text for Volume Il1: Pricing, Hedging and Trad-
ing Financial Instruments to include interest rate sensitive instruments, futures and forwards,
describing the markets but with an emphasis on the efficient pricing and hedging of portfo-
lios containing such instruments. The final chapter of Volume 111 draws the previous chapters
together by describing the mapping of portfolios of different classes of financial instruments;
this way, Volume 111 lays the essential finance theory foundations for the VaR models that are
described in this book.

Although the four volumes of Market Risk Analysis are very much interlinked, each volume
serves a different purpose. Volume 1V: Value-at-Risk Models could be adopted as a stand-alone
text for an advanced course in Market Risk, but only for students who have already gained
a good knowledge of quantitative methods, financial econometrics, finance theory, financial
markets and financial instruments. Readers would benefit by working through the previous
volumes before reading this one, or they may use the numerous cross-references to earlier
volumes that are provided in the text. This requires a considerable investment of time and
money. Although | hope that many university courses will adopt these books as core texts,
my main purpose is to provide a self-study programme for readers wishing to gain a proper
foundation for the job of market risk analysis. Dedicated and intelligent readers should be able
to understand the material in all four books with one or two years of full-time study.

The aim of Market Risk Analysis is to define a syllabus for education in market risk analy-
sis, from the basics to the most advanced level of understanding we have today, to set standards
for the profession of market risk analyst, and to provide the means whereby the required skills
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may be attained. When | have time, | hope to develop a professional Market Risk Analyst
qualification, with four exams based on each of these books and of a level equivalent to a
challenging master’s degree course.

The target readership for Market Risk Analysis, Volume 1V: Value-at-Risk Models includes
risk analysts in banks and finance-related firms such as software companies, insurance firms,
investment companies and hedge funds; academics researching into market risk and/or fore-
casting with econometric models; and students on financial risk management master’s courses.
No other existing text on value at risk takes such a pedagogical and practical approach as
this, at the same time as covering the theory both rigorously and comprehensively. Several
theoretical results are new and each empirical application is unique.

Because | focus exclusively on market risk the most similar existing texts, at least in terms
of broad content, are Dowd (2005) and Danielsson (2007). However, Dowd’s book is mainly
on the theory of market VaR, with relatively little on its practical implementation for realistic
risk management problems, and Danielsson’s book is shorter and far less detailed or compre-
hensive. Market Risk Analysis, Volume IV: Value-at-Risk Models is written at a quantitative
level that is similar to Dowd (2005), Danielsson (2007) and Christoffersen (2003), higher than
that of Jorion (2006) and lower than that of McNeil et al. (2005). It is more advanced and com-
prehensive, than Butler (1999). In so far as | place an equal emphasis on theory and practical
implementation, this book could be compared with Holton (2003).

I would not be surprised if some readers react badly to the advanced level of understand-
ing required for this book. The discipline of market risk analysis has existed for nearly two
decades, but by publishing this book I am, in a sense, challenging the entire profession. In my
view, a market risk analyst should be able to understand everything | have written, and more.
If he cannot, he is simply not qualified for this seriously responsible job. On the other hand, an
analyst who gains this understanding can look forward to a stimulating and rewarding career,
as a return on the investment of substantial time and effort required to obtain a mastery of this
material.

OUTLINE OF VOLUME IV

Chapter 1, Value at Risk and Other Risk Metrics, introduces the risk metrics that are com-
monly used by fund managers, banks and corporations. A market risk metric is a single
number that captures the uncertainty in a portfolio’s P&L, or in its return, summarizing the
portfolio’s potential for deviations from a target or expected return. Whilst VaR has become
a universal risk metric used by banks and by non-financial corporations, fund managers have
traditionally used quite different metrics. As well as tracking error and its limitations for use
in active fund management, lower partial moments and VaR-based downside risk metrics such
as benchmark VaR and expected shortfall are introduced. But VaR has some undesirable prop-
erties. It is not a coherent risk metric, unless we make some simplifying assumptions about the
behaviour of the risk factors and the portfolio type. We explain why it is important to aggre-
gate and disaggregate risks in the bottom-up risk assessment paradigm that is prevalent today,
and introduce conditional, stand-alone, marginal and incremental VaR in a general mathemat-
ical framework. Empirical examples focus on the distinction between measuring VaR at the
portfolio level and at the risk factor level, and the reason why we obtain different results when
the same historical data are used in the three fundamental types of VVaR model, i.e. parametric
linear, historical and Monte Carlo VVaR models.
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Chapter 2, Parametric Linear VaR Models, is the longest chapter in the book. It covers
the theory of parametric VaR models for linear portfolios in a rigorous mathematical frame-
work, introducing several new results. We provide formulae for both VaR and expected tail
loss (ETL) — which is also sometimes called conditional VaR — based on the assumptions
that risk factor returns have a multivariate normal distribution, a Student ¢ distribution and or
a mixture of normal and/or Student ¢ distributions. We also show how to use exponentially
weighted moving average covariance matrices and how to scale VaR over different risk hori-
zons when portfolio returns are autocorrelated. Thirty examples and several long case studies
cover the aggregation and disaggregation of stand-alone and marginal VaR for large hedged
and unhedged international portfolios containing interest rate sensitive instruments, equities
and commodities, and each is supported with its own interactive Excel spreadsheet, usually
based on real financial data.

Chapter 3, Historical Simulation, provides a critical introduction to the standard approach
to measuring historical VaR and ETL. We address the need to measure historical VaR initially
at the daily risk horizon, and the challenging problem of scaling VaR to longer risk hori-
zons. Empirical examples motivate the need for volatility adjustment, and its extension to
filtered historical simulation based on a generalized autoregressive conditional heteroscedas-
ticity (GARCH) model. Again, numerous examples and case studies based on real financial
data cover the practical implementation of historical VaR and ETL estimation, and its aggre-
gation and disaggregation for portfolios containing interest rate sensitive instruments, equities
and commodities and with foreign currency exposures. We explain how to improve the preci-
sion of VaR and ETL estimates at extreme quantiles, comparing the pros and cons of kernel
fitting, Cornish — Fisher expansion, extreme value theory and fitting a Johnson SU distribu-
tion. Throughout this chapter we deal with linear portfolios, leaving the far more complex
problem of measuring historical VaR and ETL for option portfolios to Chapter 5.

Chapter 4, Monte Carlo VaR, begins by reviewing some basic concepts in Monte Carlo
simulation from univariate and multivariate distributions, including the generation of random
numbers and variance reduction. However, fewer than 20 pages are devoted to this, and readers
should not expect to cover the material in as much depth as textbooks that are exclusively con-
cerned with simulation. The main focus of this chapter is a subject that has hitherto received
little attention in the VaR literature: the need to provide a proper specification of the risk factor
returns model when measuring Monte Carlo VaR. First we focus on building realistic dynamic
models of individual risk factor returns, including volatility clustering and regime switching,
and then we cover multivariate models, from multivariate normal i.i.d. processes to models
with general parametric marginals with dependency captured by copulas. We also explain
how to reduce the number of risk factors using principal component analysis. All of the com-
plex models introduced are implemented in interactive Excel spreadsheets for a variety of real
portfolios.

Chapter 5, Value at Risk for Option Portfolios, opens with a summary of the Taylor expan-
sions that are used to map option portfolios to their main risk factors, and explains the likely
effect on VaR estimates due to the size and magnitude of the different Greeks of a portfolio:
specifically, these are termed delta, gamma, vega and theta effects. We take care to explain
why these effects can be very different depending on whether we are estimating static VaR,
which assumes the portfolio is not traded during the risk horizon, and dynamic VaR, where
the portfolio is rebalanced daily over the risk horizon to return the risk factor sensitivities to
their original level. Static VaR is suitable for estimating the risk of a single structured product
that is not intended to be dynamically rebalanced, and dynamic VaR is useful for assessing
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risk when traders are at their limits. The main focus of this chapter is the practical implemen-
tation of both historical and Monte Carlo VVaR models for option portfolios, evaluated both
exactly and with risk factor mapping. Starting with simple, unhedged positions, the practical
examples become increasingly complex, including VaR estimates for option portfolios with
several underlyings and path-dependent claims.

Chapter 6, Risk Model Risk, covers the reasons why different VaR methodologies give
different results and the statistical methods used to assess the accuracy of VaR estimates.
There are many sources of error in VaR and ETL estimates. In equity and option portfo-
lios even the risk factor mapping can be a very significant source of model risk, and quite
different VaR estimates can result when we change the risk factors, or the data used to
estimate the risk factor sensitivities, or the statistical methodology used for factor sensitiv-
ity estimation. In all portfolios it is the specification of the risk factor returns model that
is the most significant source of model risk, and many empirical examples are provided to
support this. After deriving theoretical results on confidence intervals for VaR estimates,
the main focus of this chapter is on the VaR and ETL backtesting methodology. Starting
with the simple backtests suggested by banking regulators, we describe unconditional and
conditional coverage tests, regression-based backtests, ETL backtests based on standard-
ized exceedance residuals, bias statistics and distribution forecasts. Throughout this section
of the chapter, we illustrate the practical implementation of all these backtests in Excel
workbooks using two different VaR and ETL estimates for a simple position on the S&P
500 index.

Chapter 7, Scenario Analysis and Stress Testing, opens by challenging the validity of his-
torical data for estimating VaR and ETL, except over very short risk horizons. We maintain
that using historical data itself implies a subjective view (that history will repeat itself) and
that other beliefs or personal subjective views of senior management and the board of direc-
tors can and should be used in a mathematically coherent model of risk. Beginning with a
description of how different types of beliefs about future market behaviour can be incorpo-
rated into VaR and ETL estimation, we argue that the traditional stress-testing framework that
aims to quantify a ‘worst case’ loss is totally meaningless. So, whilst the standard stress test-
ing methods such as “factor push’ are both described and illustrated, we focus on a coherent
stress testing framework based on what | call ‘distribution scenarios’. The last section of the
chapter focuses on the use of historical or hypothetical stressed covariance matrices, stress
tests based on principal components and on GARCH volatility clustering, and endogenous
and exogenous liquidity adjustments to VaR.

Chapter 8, Capital Allocation, covers the application of VaR and ETL to regulatory and
economic capital allocation. Beginning with the basic differences between banking and trad-
ing book accounting, we cover the minimum market risk capital requirements for banks under
the 1996 Amendment to the first Basel Accord, describing and illustrating both the internal
models approach and the standardized rules. After the new Basel Il Accord, in the wake of
the credit crunch that began in 2007, the Basel Committee suggested a new incremental risk
charge for credit spread and equity risks, applied to internal models that have specific risk
recognition. We provide empirical examples to illustrate how banks might choose to calculate
this new add-on to the capital charge. The second half of the chapter opens with a descrip-
tion of the measurement and applications of economic capital, having particular emphasis on
aggregation risk. We then introduce the most common types of risk adjusted performance
measures for economic capital allocation, and provide empirical examples in Excel on the
optimal allocation of economic capital under various constraints.
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ABOUT THE CD-ROM

This book emphasizes teaching through practical examples supported by transparent Excel
spreadsheets. Whenever it is possible to illustrate a model or a formula using a practical exam-
ple — however simple or complex — I do this using Excel. This volume alone contains 62 Excel
workbooks (each with several spreadsheets, some of which are fairly complex) covering all
the examples and figures in the text, and 16 case studies that implement VaR models in prac-
tice. These may be found on the accompanying CD-ROM. The data can be used by tutors or
researchers since they were obtained from free internet sources, and references for updating
are provided. Also the graphs and tables can be modified if required, and copied into lectures
notes based on this book. Within these spreadsheets readers may change any parameters of
the problem (the parameters are indicated in red) and see the new solution (the output is indi-
cated in blue). Rather than using VBA code, which will be obscure to many students, | have
encoded the formulae directly into the spreadsheet. Thus the reader need only click on a cell
to read the formula. The interactive spreadsheets are designed to offer tutors the possibility
to set, as exercises for their courses, an unlimited number of variations on the examples in
the text.

I hope you will find these examples and case studies useful. A great variety of problems
have been illustrated, from the simple estimation of VaR at the portfolio level using basic
forms of each VaR model, to advanced methodologies such as filtered historical simulation
with adjustments for volatility and correlation clustering, or Monte Carlo VaR using copulas
and non-normal marginals, applied at the risk factor level and disaggregated into stand-alone
and marginal VaR components due to different risk factor classes.
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V.1
L Value at Risk and Other Risk Metrics |

IV.1.1 INTRODUCTION

A market risk metric is a measure of the uncertainty in the future value of a portfolio, i.e. a
measure of uncertainty in the portfolio’s return or profit and loss (P&L). Its fundamental
purpose is to summarize the potential for deviations from a target or expected value. To
determine the dispersion of a portfolio’s return or P&L we need to know about the potential
for individual asset prices to vary and about the dependency between movements of different
asset prices. Volatility and correlation are portfolio risk metrics but they are only sufficient
(in the sense that these metrics alone define the shape of a portfolio’s return or P&L dis-
tribution) when asset or risk factor returns have a multivariate normal distribution. When
these returns are not multivariate normal (or multivariate Student ¢) it is inappropriate and
misleading to use volatility and correlation to summarize uncertainty in the future value of a
portfolio.

Statistical models of volatility and correlation, and more general models of statistical
dependency called copulas, are thoroughly discussed in Volume Il of Market Risk Analysis.
The purpose of the present introductory chapter is to introduce other types of risk metric
that are commonly used by banks, corporate treasuries, portfolio management firms and other
financial practitioners.

Following the lead from both regulators and large international banks during the mid-1990s,
almost all financial institutions now use some form of value at risk (VaR) as a risk metric. This
almost universal adoption of VaR has sparked a rigorous debate. Many quants and academics
argue against the metric because it is not necessarily sub-additive,2 which contradicts the
principal of diversification and hence also the foundations of modern portfolio theory.
Moreover, there is a closely associated risk metric, the conditional VaR, or what | prefer to call
the expected tail loss (ETL) because the terminology is more descriptive, that is sub-additive.
And it is very simple to estimate ETL once the firm has developed a VaR model, so why not
use ETL instead of VaR? Readers are recommended the book by Szeg6 (2004) to learn more
about this debate.

The attractive features of VaR as a risk metric are as follows:

It corresponds to an amount that could be lost with some chosen probability.
It measures the risk of the risk factors as well as the risk factor sensitivities.
It can be compared across different markets and different exposures.

It is a universal metric that applies to all activities and to all types of risk.

1 See the remarks on correlation in particular, in Section 11.3.3.2.
2 See Section 1V.1.8.3.
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e |t can be measured at any level, from an individual trade or portfolio, up to a single
enterprise-wide VaR measure covering all the risks in the firm as a whole.

e When aggregated (to find the total VaR of larger and larger portfolios) or disaggre-
gated (to isolate component risks corresponding to different types of risk factor) it takes
account of dependencies between the constituent assets or portfolios.

The purpose of this chapter is to introduce VaR in the context of other ‘traditional” risk
metrics that have been commonly used in the finance industry. The assessment of VaR is
usually more complex than the assessment of these traditional risk metrics, because it depends
on the multivariate risk factor return distribution and on the dynamics of this distribution, as
well as on the risk factor mapping of the portfolio. We term the mathematical models that are
used to derive the risk metric, the risk model and the mathematical technique that is applied to
estimate the risk metrics from this model (e.g. using some type of simulation procedure) the
resolution method.

Although VaR and its related measures such as ETL and benchmark VaR have recently
been embraced almost universally, the evolution of risk assessment in the finance industry
has drawn on various traditional risk metrics that continue to be used alongside VaR. Broadly
speaking, some traditional risk metrics only measure sensitivity to a risk factor, ignoring the
risk of the factor itself. For instance, the beta of a stock portfolio or the delta and gamma of an
option portfolio are examples of price sensitivities. Other traditional risk metrics measure the
risk relative to a benchmark, and we shall be introducing some of these metrics here, including
the omega and kappa indices that are currently favoured by many fund managers.®

The outline of the chapter is as follows. Section 1V.1.2 explains how and why risk assess-
ment in banking has evolved separately from risk assessment in portfolio management.
Section 1V.1.3 introduces a number of downside risk metrics that are commonly used in port-
folio management. These are so called because they focus only on the risk of underperforming
a benchmark, ignoring the ‘risk’ of outperforming the benchmark.

The reminder of the chapter focuses on VaR and its associated risk metrics. We use the
whole of Section 1V.1.4 to provide a thorough definition of market VaR. For instance, when
VaR is used to assess risks over a long horizon, as it often is in portfolio management, we
should adjust the risk metric for any difference between the expected return and the risk free
or benchmark return.* However, a non-zero expected excess return has negligible effect when
the risk horizon for the VaR estimate is only a few days, as it usually is for banks, and so some
texts simply ignore this effect.

Section IV.1.5 lays some essential foundations for the rest of this book by stating some
of the basic principles of VaR measurement. These principles are illustrated with simple
numerical examples where the only aim is to measure the VaR

e at the portfolio level,® and where
e the portfolio returns are independent and identically distributed (i.i.d.).

3 Contrary to popular belief, the tracking error risk metric does not perform this role, except for passive (index tracking) portfolios. |
have taken great care to clarify the reasons for this in Section I1.1.6.

4 This is because a risk metric is usually measured in present value terms — see Section 1V.1.5.4 for further details.

5 This means that we measure only one risk, for the portfolio as a whole, and we do not attribute the portfolio risk to different market
factors.
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Section 1V.1.6 begins by stressing the importance of measuring VaR at the risk factor level:
without this we could not quantify the main sources of risk. This section also includes two
simple examples of measuring the systematic VaR, i.e. the VaR that is captured by the entire
risk factor mapping.® We consider two examples: an equity portfolio that has been mapped to
a broad market index and a cash-flow portfolio that has been mapped to zero-coupon interest
rates at standard maturities.

Section IV.1.7 discusses the aggregation and disaggregation of VaR. One of the many
advantages of VaR is that is can be aggregated to measure the total VaR of larger and
larger portfolios, taking into account diversification effects arising from the imperfect depen-
dency between movements in different risk factors. Or, starting with total risk factor VaR,
i.e. systematic VaR, we can disaggregate this into stand-alone VaR components, each repre-
senting the risk arising from some specific risk factors.” Since we take account of risk factor
dependence when we aggregate VaR, the total VaR is often less than the sum of the stand-
alone VaRs. That is, VaR is often sub-additive. But it does not have to be so, and this is one
of the main objections to using VaR as a risk metric. We conclude the section by introducing
marginal VaR (a component VaR that is adjusted for diversification, so that the sum of the
marginal VaRs is approximately equal to the total risk factor VVaR) and incremental VaR (which
is the VaR associated with a single new trade).

Section 1V.1.8 introduces risk metrics that are associated with VaR, including the condi-
tional VaR risk metric or expected tail loss. This is the average of the losses that exceed the
VaR. Whilst VaR represents the loss that we are fairly confident will not be exceeded, ETL
tells us how much we would expect to lose given that the VaR has been exceeded. We also
introduce benchmark VaR and its associated conditional metric, expected shortfall (ES). The
section concludes with a discussion on the properties of a coherent risk metric. ETL and ES
are coherent risk metrics, but when VaR and benchmark VaR are estimated using simulation
they are not coherent because they are not sub-additive.

Section 1V.1.9 introduces the three fundamental types of resolution method that may be used
to estimate VaR, applying each method in only its most basic form, and to only a very simple
portfolio. After a brief overview of these approaches, which we call the normal linear VaR,
historical VaR and normal Monte Carlo VaR models, we present a case study on measuring
VaR for a simple position of $1000 per point on an equity index. Our purpose here is to
illustrate the fundamental differences between the models and the reasons why our estimates
of VaR can differ so much depending on the model used. Section 1V.1.10 summarizes and
concludes.

Volume 1V of the Market Risk Analysis series builds on the three previous volumes, and
even for this first chapter readers first require an understanding of:®

quantiles and other basic concepts in statistics (Section 1.3.2);

the normal distribution family and the standard normal transformation (Section 1.3.3.4);
stochastic processes in discrete time (Section 1.3.7.1);

portfolio returns and log returns (Section 1.1.4);

aggregation of log returns and scaling of volatility under the i.i.d. assumption
(Section 11.3.2.12);

6 S0 systematic VaR may also be called total risk factor VaR.

7 As its name suggests, ‘stand-alone equity VaR’ does not take account of the diversification benefits between equities and bonds, for
instance.

8 The most important sections from other volumes of Market Risk Analysis are listed after each topic.
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o the matrix representation of the expectation and variance of returns on a linear portfolio
(Section 1.2.4);

e univariate normal Monte Carlo simulation and how it is performed in Excel
(Section 1.5.7).

e risk factor mappings for portfolios of equities, bonds and options, i.e. the expression of
the portfolio P&L or return as a function of market factors that are common to many
portfolios (e.g. stock index returns, or changes in LIBOR rates) and which are called the
risk factors of the portfolio (Section I11.5).

There is a fundamental distinction between linear and non-linear portfolios. A linear port-
folio is one whose return or P&L may be expressed as a linear function of the returns or P&L
on its constituent assets or risk factors. All portfolios except those with options or option-like
structures fall into the category of linear portfolios.

It is worth repeating here my usual message about the spreadsheets on the CD-ROM. Each
chapter has a folder which contains the data, figures, case studies and examples given in the
text. All the included data are freely downloadable from websites, to which references for
updating are given in the text. The vast majority of examples are set up in an interactive
fashion, so that the reader or tutor can change any parameter of the problem, shown in red,
and then view the output in blue. If the Excel data analysis tools or Solver are required, then
instructions are given in the text or the spreadsheet.

IV.12 AN OVERVIEW OF MARKET RISK ASSESSMENT

In general, the choice of risk metric, the relevant time horizon and the level of accuracy
required by the analyst depend very much on the application:

e A typical trader requires a detailed modelling of short-term risks with a high level of
accuracy.

e A risk manager working in a large organization will apply a risk factor mapping that
allows total portfolio risk to be decomposed into components that are meaningful to
senior management. Risk managers often require less detail in their risk models than
traders do. On the other hand, risk managers often want a very high level of confidence
in their results. This is particularly true when they want to demonstrate to a rating agency
that the company deserves a good credit rating.

e Senior managers that report to the board are primarily concerned with the efficient allo-
cation of capital on a global scale, so they will be looking at long-horizon risks, taking a
broad-brush approach to encompass only the most important risks.

The metrics used to assess market risks have evolved quite separately in banking, port-
folio management and large corporations. Since these professions have adopted different
approaches to market risk assessment we shall divide our discussion into these three broad
categories.

1IV.1.2.1 Risk Measurement in Banks

The main business of banks is to accept risks (because they know, or should know, how to
manage them) in return for a premium paid by the client. For retail and commercial banks and
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for many functions in an investment bank, this is, traditionally, their main source of profit. For
instance, banks write options to make money on the premium and, when market making, to
make profits from the bid—ask spread. It is not their business, at least not their core business,
to seek profits through enhanced returns on investments: this is the role of portfolio manage-
ment. The asset management business within a large investment bank seeks superior returns
on investments, but the primary concern of banks is to manage their risks.

A very important decision about risk management for banks is whether to keep the risk
or to hedge at least part of it. To inform this decision the risk manager must first be able to
measure the risk. Often market risks are measured over the very short term, over which banks
could hedge their risks if they chose to, and over a short horizon is it standard to assume the
expected return on a financial asset is the risk free rate of return.® So modelling the expected
return does not come into the picture at all. Rather, the risk is associated with the unexpected
return — a phrase which here means the deviation of the return about its expected value — and
the expected rate of return is usually assumed to be the risk free rate.

Rather than fully hedging all their risks, traders are usually required to manage their
positions so that their total risk stays within a limit. This limit can vary over time. Setting
appropriate risk limits for traders is an important aspect of risk control. When a market has
been highly volatile the risk limits in that market should be raised. For instance, in equity
markets rapid price falls would lead to high volatility and equity betas could become closer
to 1 if the stock’s market correlation increased. If a proprietary trader believes the market
will now start to rise he may want to buy into that market so his risk limits, based on either
volatility or portfolio beta, should be raised.*°

Traditionally risk factor exposures were controlled by limiting risk factor sensitivities. For
instance, equity traders were limited by portfolio beta, options traders operated under limits
determined by the net value Greeks of their portfolio, and bond traders assessed and managed
risk using duration or convexity.!* However, two significant problems with this traditional
approach have been recognized for some time.

The first problem is the inability to compare different types of risks. One of the reasons why
sensitivities are usually represented in value terms is that value sensitivities can be summed
across similar types of positions. For instance, a value delta for one option portfolio can be
added to a value delta for another option portfolio;*? likewise the value duration for one bond
portfolio can be added to the value duration for another bond portfolio. But we cannot mix two
different types of sensitivities. The sum of a value beta, a value gamma and a value convexity
is some amount of money, but it does not correspond to anything meaningful. The risk factors
for equities, options and bonds are different, so we cannot add their sensitivities. Thus, whilst
value sensitivities allow risks to be aggregated within a given type of trading activity, they do
not aggregate across different trading units. The traditional sensitivity-based approach to risk
management is designed to work only within a single asset class.

The second problem with using risk factor sensitivities to set traders’ limits is that they
measure only part of the risk exposure. They ignore the risks due to the risk factors themselves.

9 We shall show that a different assumption would normally have negligible effect on the result, provided the risk horizon is only a
few days or weeks.

10 In this case the trader’s economic capital allocation should be increased, since it is based on a risk adjusted performance measure
that takes account of this positive expected return. See Section 1V.8.3.

1 For more information on the options “Greeks’ see Section 111.3.4, and for duration and convexity see Sections I11.1.5.

12 These value sensitivities are also sometimes called ‘dollar’ sensitivities, even though they are measured in any currency. See
Chapter I11.5 and Section 111.5.5.2 in particular for further details.
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Traders cannot influence the risk of a risk factor, but they can monitor the risk factor volatility
and manage their systematic risk by adjusting their exposure to the risk factor.™®

In view of these two substantial problems most large banks have replaced or augmented
the traditional approach. Many major banks now manage traders’ limits using VaR and its
associated risk metrics.

New banking regulations for market risk introduced in 1996 heralded a more ‘holistic’
approach to risk management. Risk is assessed at every level of the organization using a uni-
versal risk metric, such as VaR, i.e. a metric that applies to all types of exposures in any
activity; and it relates not only to market risks, but also to credit and operational risks. Market
VaR includes the risk arising from the risk factors as well as the factor sensitivities; it can
be aggregated across any exposures, taking account of the risk factor correlations (i.e. the
diversification effects) to provide an enterprise-wide risk assessment; and it allows risks to be
compared across different trading units.** As a result most major banks have adopted VaR,
or a related measure such as conditional VaR, to assess the risks of their operations at every
level, from the level of the trader to the entire bank.

Banking risks are commonly measured in a so-called ‘bottom-up’ framework. That is, risks
are first identified at the individual position level; then, as positions are aggregated into port-
folios, we obtain a measure of portfolio risk from the individual risks of the various positions.
As portfolios are aggregated into larger and larger portfolios — first aggregating all the traders’
portfolios in a particular trading unit, then aggregating across all trading units in a particular
business line, then aggregating over all business lines in the bank — the risk manager in a bank
will aggregate the portfolio’s risks in a similar hierarchy. A further line of aggregation occurs
for banks with offices in different geographical locations.

IV.1.2.2 Risk Measurement in Portfolio Management

One of the reasons why risk assessment in banking has developed so rapidly is the impetus
provided by the new banking regulations during the 1990s. Banks are required by regulators
to measure their risks as accurately as possible, every day, and to hold capital in proportion
to these risks. But no such regulations have provided a catalyst for the development of good
risk management practices in the fund management industry. The fund manager does have a
responsibility to report risks accurately, but only to his clients. As a result, in the first few
years of this century major misconceptions about the nature of risk relative to a benchmark
still persisted amongst some major fund managers.

Until the 1990s most funds were ‘passive’, i.e. their remit was merely to track a benchmark.
During this time an almost universal approach to measuring risk relative to a benchmark
was adopted, and this was commonly called the tracking error. Most managers were not
allowed to sell short,*® for fear of incurring huge losses if one of the shares that was sold short
dramatically rose in price; clients used to limit mutual fund managers to long-only positions
on a relatively small investment universe.*®

13 30 if a particular risk factor has an unusually high volatility then a trader can reduce his exposure to that risk factor and increase his
exposure to a less volatile one.

14 Other advantages of VaR were listed in Section 1V.1.1.

15 To sell short is to sell a stock that is not owned: shares are borrowed on the ‘repurchase’ (repo) market and returned when the short
sale is closed out with a corresponding purchase.

16 The investment universe is the set of all assets available to the fund manager.
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Then, during the 1990s actively managed funds with mandates to outperform a benchmark
became popular. So, unlike banking, in portfolio management risks are usually measured
relative to a benchmark set by the client. However, as portfolio managers moved away from
passive management towards the so-called alpha strategies that are commonly used today,
problems arose because the traditional control ranges which limited the extent to which the
portfolio could deviate from the benchmark were dropped and many large fund managers used
the tracking error as a risk metric instead. But tracking error is not an appropriate risk metric
for actively managed funds.*

Also, with the very rapid growth in hedge funds that employ diverse long-short strategies
on all types of investment universe, the risks that investors face have become very complex
because hedge fund portfolio returns are highly non-normal. Hence, more sophisticated risk
measurement tools have recently been developed. Today there is no universal risk metric
for the portfolio management industry but it is becoming more and more common to use
benchmark VaR and its associated risk metrics such as expected shortfall.

In portfolio management the risk model is often based on the expected returns model, which
itself can be highly developed. As a result the risk metrics and the performance metrics are
inextricably linked. By contrast, in banks the expected return, after accounting for the normal
cost of doing business, is most often set equal to the risk free rate.

Another major difference between risk assessment in banking and in portfolio management
is the risk horizon, i.e. the time period over which the risk is being forecast. Market risk in
banking is assessed, at least initially, over a very short horizon. Very often banking risks are
forecast at a daily frequency. Indeed, this is the reason why statistical estimates and forecasts
of volatilities, correlations and covariance matrices are usually constructed from daily data.
Forecasts of risks over a longer horizon are also required (e.g. 1-year forecasts are needed
for the computation of economic capital) but in banking these are often extrapolated from
the short-term forecasts. But market risk in portfolio management is normally forecast over a
much longer horizon, often 1 month or more. This is linked to the frequency of risk reports
that clients require, to data availability and to the fact that the risk model is commonly tied to
the returns model, which often forecasts asset returns over a 1-month horizon.

IV.1.2.3 Risk Measurement in Large Corporations

The motivation for good financial risk management practices in large corporations is the
potential for an increase in the value of the firm and hence the enhancement of value for
shareholders and bondholders. Also, large corporations have a credit rating that affects the
public value of their shares and bonds, and the rating agency requires the risk management
and capitalization of the firm to justify its credit rating. For these two reasons the boards and
senior managements of large corporations have been relatively quick to adopt the high risk
management standards that have been set by banks.

Unlike portfolio management, market risks for corporations are not usually measured
relative to a benchmark. Instead, risks are decomposed into:

e idiosyncratic Of reducible risk which could be diversified away by holding a sufficiently
large and diversified portfolio; and

17 A long discussion of this point is given in Section 11.1.6.
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e undiversifiable, systematic Of irreducible risk, which is the risk that the firm is always
exposed to by choosing to invest in a particular asset class or to operate in a particular
market.

Like banks, the expected returns to various business lines in a major corporation are usu-
ally modelled separately from the risks. The expected return forecasts are typically based on
economic models for P&L predictions based on macroeconomic variables such as inflation,
interest rates and exchange rates. Like banks, corporations will account for the normal ‘cost’
of doing business, with any expected losses being provisioned for in the balance sheet. Hence,
from the point of view of the risk manager in a corporate treasury, the expected returns are
taken as exogenous to the risk model.

The financial risks taken by a large corporation are typically managed using economic cap-
ital. This is a risk adjusted performance measure which does not necessarily have anything
to do with ordinary capital.®® The risk part of the risk adjusted performance measure is very
commonly measured using a quantile risk metric such as VaR, or conditional VaR, to assess
the market, credit and ‘other’ risks of:

individual positions;

positions in a trading book;

trading books in the ‘desk’;

desks in a particular activity or ‘business unit’;
business units in the firm.

That is, the risk assessment proceeds from the bottom up, just as it does in a bank. Risks
(and returns) are first assessed at the most elemental level, often instrument by instrument,
and according to risk type, i.e. separately for market, credit and other risks such as opera-
tional risks. Then, individual positions are progressively aggregated into portfolios of similar
instruments or activities, these are aggregated up to the business units, and then these are
aggregated across all business units in the firm. Then, usually only at the very end, VaR is
aggregated across the major types of risks to obtain a global representation of risks at the
company or group level.

Expected returns are also assessed at the business unit level, and often also at the level of
different types of activities within the business unit. The economic capital can thus be calcu-
lated at a fairly disaggregated level, and used for risk budgeting of the corporation’s activities.
To provide maximum shareholder value, the firm will seek to leverage those activities with
the best risk adjusted performance and decrease the real capital allocation to activities with
the worst risk adjusted performance, all else being equal.

The rating agency will assess the capitalization of the entire corporation. To justify its credit
rating the corporation must demonstrate that it has a suitably low probability of default during
the next year. As shown in Section 1V.8.3.1, this probability is related to the total VaR of the
firm, i.e. the sum of the market, credit and operational VaR over all the firm’s activities. For
instance, the AA credit rating corresponds to a 0.03% default probability over a year. This
means that to obtain this credit rating the corporation may need to hold sufficient capital to
cover the 99.97% total VaR at a 1-year horizon.

18 Except at the firm-wide level — see Section 1V.8.3 for further details.
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IV.1.3 DOWNSIDE AND QUANTILE RISK METRICS

In this section we introduce the downside risk metrics that are popular for portfolio manage-
ment. A downside risk metric is one that only focuses on those returns that fall short of a target
or threshold return. The target or threshold return can be the benchmark return (appropriate
for a passive fund) or some percentage above the benchmark return (appropriate for an active
fund). Downside risk metrics are now common in active risk management, and there are a
large number of possible risk metrics to choose from which are described below.

IV.1.3.1 Semi-Standard Deviation and Second Order Lower Partial Moment

The semi-standard deviation is the square root of the semi-variance, a concept introduced by
Markovitz (1959). Semi-variance is a measure of the dispersion of only those realizations on
a continuous random variable X that are less than the expectation of X.1° It is defined as

SV(X) = E(min(X — E(X), 0)%) . (IvV.1.1)
But since E(min(X — E(X), 0)) #0,
E(min(X — E(X), 0)?) # V(min(X — E(X), 0))..

Hence, the terms semi-variance and semi-standard deviation are misnomers, even though they
are in common use.

The ex post semi-standard deviation that is estimated from a sample {R;,..., Ry} of T
returns is

T
Semi= | T™*Y_min(R, — R, 0)2, (IV.1.2)

t=1

where R is the sample mean return. Like most risk metrics, including the other lower partial
moment metrics that we define in the next section, this is normally quoted in annualized terms.
A numerical example is provided below.

We can extend the operator (1V.1.1) to the case where a target or threshold return t is used
in place of the expected return. We call this the lower partial moment (LPM) of order 2, or
second order lower partial moment, and denote it LPM, .. The following example illustrates
how an ex post estimate may be calculated.

EXAMPLE IV.1.1: SEMI-STANDARD DEVIATION AND SECOND ORDER LPM

A historical sample of 36 active returns on a portfolio is shown in Table I1V.1.1. Calculate (a)
the semi-standard deviation and (b) the second order LPM relative to a threshold active return
of 2% per annum.

19 All lower partial moment metrics may also be defined for discrete random variables, but for our purpose X is regarded as continuous.
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Table IV.1.1  Active returns

Month Active return Month Active return
Jan-06 0.40% Jul-07 —1.15%
Feb-06 0.25% Aug-07 0.36%
Mar-06 0.27% Sep-07 0.26%
Apr-06 0.11% Oct-07 0.25%
May-06 —-0.13% Nov-07 -0.21%
Jun-06 0.12% Dec-07 —-0.27%
Jul-06 0.21% Jan-08 0.04%
Aug-06 0.05% Feb-08 —0.05%
Sep-06 —0.13% Mar-08 0.00%
Oct-06 —0.29% Apr-08 0.29%
Nov-06 —0.49% May-08 0.30%
Dec-06 —0.32% Jun-08 0.53%
Jan-07 0.07% Jul-08 0.41%
Feb-07 —0.22% Aug-08 —0.05%
Mar-07 —0.63% Sep-08 0.49%
Apr-07 0.03% Oct-08 0.41%
May-07 0.06% Nov-08 0.34%
Jun-07 —0.24% Dec-08 —3.00%

SOLUTION The spreadsheet for this example includes a column headed min(AR, — x, 0)
where AR, is the active return at time t and where

(@) x is the sample mean active return (—0.03%) for the semi-standard deviation, and
(b) x=0.165% for the LPM. Remember the active returns are monthly, so the target active
return of 2% per annum translates into a target of 0.165% per month.

Dividing the sum of the squared excess returns by 36, multiplying by 12 and taking the square
root gives the value in annualized terms: 1.81% for the semi-standard deviation and 2.05% for
the second order LPM.

IV.1.3.2 Other Lower Partial Moments
More generally LPMs of order k can be defined for any positive k. The LPM operator is:

1/k

LPM, .(X) = E(Imin(X — 7, 0)[*) " = E(max(x — X, 0)*)""*, (IV.1.3)

where T is some target or threshold return and k is positive, but need not be a whole number.?°
For instance the LPM of order 1, which is also called the regret, is

LPM, . (X) = E(max(t — X, 0)) . (IV.1.4)

It follows immediately from (IV.1.4) that the regret operator is the expected pay-off to a put
option with strike equal to the target return t. So, like any put option, it has the intuitive

20 We prefer the second notation in (1V.1.3), using the maximum function, because, being non-negative, we always obtain a positive
value in the calculations. Otherwise, we can use the minimum value as before, but we must take the absolute value of this before
operating with k.
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interpretation of an insurance cost.? It is the cost of insuring the downside risk of a portfolio.
Like semi-standard deviation, regret is able to distinguish ‘good risk” from “bad risk’.

As k increases, the kth order LPM places more weight on extremely poor returns. An ex
post estimate of an LPM based on a sample {R,, ..., Ry} of T returns is

T 1/k
est.LPM, , = <le max(t — R, 0)’1) . (IV.1.5)

t=1

Note that LPMs;, is sometimes called the semi-skewness and LPM, 4 is sometimes called the
semi-kurtosis.

EXAMPLE IV.1.2: LPM RISK METRICS

Calculate the kth order LPMs for k=1, 2, 3, 4, 5, 10 and 20 based on the sample of active
returns in Example 1V.1.1 and using (a) a threshold active return of 0%; and (b) a threshold
active return of 2% per annum.

SOLUTION The calculations are very similar to (b) in the previous example, except that this
time we use a power k of the series on max(t — R,, 0) and take the kth root of the result. By
changing the threshold for different values of k in the spreadsheet the reader will see that
increasing the threshold increases the LPM, and for thresholds of 0% and 2% we obtain the
results shown in Table 1V.1.2. For k > 2, LPM measures also increase with k. However, this is
not a general rule, it is because of our particular sample: as the order increases the measures
put progressively higher weights on the very extreme active return of —3% in December 2008,
which increases the risk considerably. In general, the behaviour of the LPM metrics of various
orders as the threshold changes depends on the specific characteristics of the sample.

Table IV.1.2 LPM of various orders
relative to two different thresholds

k Threshold
0% 2%
1 2.06% 3.11%
2 1.84% 2.05%
3 2.09% 2.23%
4 2.28% 2.41%
5 2.41% 2.54%
10 2.69% 2.84%
20 2.84% 3.00%

IV.1.3.3 Quantile Risk Metrics

For any o between 0 and 1 the o quantile of the distribution of a continuous random variable
X is a real number x, such that?

P(X < x,) =0

2L Recall that buying an out-of-the money put option on a share that you hold is like an insurance, since if the price of the share falls
the option allows you to sell the share at some guaranteed price (the strike).

2 Asa— 0, x4, — —oo and as a — 1, x, — co. Quantiles were formally introduced in Chapter 1.3. See Sections 1.3.2.8 and 1.3.5.1
in particular.
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If we know the distribution function F(x) of X then the quantile corresponding to any given
value of a may be calculated as

xo = F Xa).

When a target return is an o quantile of the return distribution the probability of underper-
forming the target is a. For instance, if the 5% quantile of a return distribution is —3% then
we are 95% confident that the return will not be lower than —3%. So a quantile becomes a
downside risk metric when o is small, and very often we use standard values such as 0.1%,
1%, 5% or 10% for a.

In market risk, X is usually a return or P&L on an investment, and « is often assumed to
be small so that the a quantile corresponds to a loss that we are reasonably certain will not
be exceeded. The time horizon over which the potential for underperformance is measured is
implicit in the frequency of returns or P&L. For instance, it would be measured over a month
if X were a monthly return.

The next example considers a return that is assumed to be i.i.d. and normally distributed,
with mean | and standard deviation . Then, for any a € (0, 1) applying the standard normal
transformation gives

X— o o
P(X<xu)=P<—H<x “):p(z<x “)za,
(02 (o

o

where Z is a standard normal variable. For instance, if a return is normally distributed with
mean 10% and standard deviation 25% then the probability of returning less than 5% is 42%,
because

X—01 005-0.1
025 025

using the fact that —0.2 is the 42% quantile of the standard normal distribution.?

P(X <0.05) = P< ) =P(Z <—-0.2)=0.42,

EXAMPLE 1V.1.3: PROBABILITY OF UNDERPERFORMING A BENCHMARK

Consider a fund whose future active returns are normally distributed, with an expected active
return over the next year of 1% and a standard deviation about this expected active return
(i.e. tracking error) of 3%. What is the probability of underperforming the benchmark by 2%
or more over the next year?

SOLUTION The density function for the active return is X ~ N(0.01, 0.0009), as illustrated
in Figure IV.1.1. We need to find P(X < —0.02). This is?*

X-001 —0.02-001
003 003

P(X < —0.02) = p( ) —P(Z < —1)=0.1587.

Hence, the probability that this fund underperforms the benchmark by 2% or more is 15.87%.
This can be also seen in Figure 1V.1.1, as the area under the active return density function to
the left of the point —0.02.

23 \We can find this using the command NORMSDIST (—0.2) in Excel.
241 Excel, NORMSDIST (—1) = 0.1587.
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Figure 1V.1.1 Probability of underperforming a benchmark by 2% or more

In the above example, we found the probability of underperforming the benchmark by know-
ing that —1 is the 15.87% quantile of the standard normal distribution. In the next section we
shall show that the quantile of a distribution of a random variable X is a risk metric that is
closely related to VaR. But, unlike LPMs, quantiles are not invariant to changes in the returns
that are greater than the target or threshold return. That is, the quantile is affected by ‘good
returns’ as well as “‘bad returns’. This is not necessarily a desirable property for a risk metric.
On the other hand, quantiles are easy to work with mathematically. In particular, if Y =
h(X), where h is a continuous function that always increases then, for every a, the o quantile

y. Of Y is just
Ya=h(x), (IV.1.6)

where x, is the a quantile of X. For instance, if Y =In(X) and the 5% quantile of X is 1 then
the 5% quantile of Y is 0, because In(1) =0.

IV.14 DEFINING VALUE AT RISK

Value at risk is a loss that we are fairly sure will not be exceeded if the current portfolio
is held over some period of time. In this section we shall assume that VaR is measured at
the portfolio level, without considering the mapping of portfolios to their risk factors. More
detailed calculations of VaR based on risk factor mappings are discussed later in this chapter
and throughout the subsequent chapters.

IV.1.4.1 Confidence Level and Risk Horizon
VaR has two basic parameters:
e the significance level o (OF confidence level 1 — at);

e the risk horizon, denoted h, which is the period of time, traditionally measured in trading
days rather than calendar days, over which the VaR is measured.
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Often the significance level is set by an external body, such as a banking regulator. Under the
Basel Il Accord, banks using internal VaR models to assess their market risk capital require-
ment should measure VaR at the 1% significance level, i.e. the 99% confidence level. A credit
rating agency may set a more stringent significance level, i.e. a higher confidence level (e.g. the
0.03% significance or 99.97% confidence level). In the absence of regulations or external
agencies, the significance/confidence level for the VaR will depend on the attitude to risk of
the user. The more conservative the user, the lower the value of a, i.e. the higher the confidence
level applied.

The risk horizon is the period over which we measure the potential loss. Different risks
are naturally assessed over different time periods, according to their liquidity.® For instance,
under the Basel banking regulations the risk horizon for the VaR is 10 days. In the absence of
internal or external constraints (e.g. regulations) the risk horizon of VaR should refer to the
time period over which we expect to be exposed to the position. An exposure to a liquid asset
can usually be closed or fully hedged much faster than an exposure to an illiquid asset. And
the time it takes to offload the risk depends on the size of the exposure as well as the market
liquidity. Some of the most liquid positions are on major currencies and they can be closed or
hedged extremely rapidly — usually within hours, even in a crisis. On the other hand private
placements are highly illiquid:?® there is no quotation in a market and the only way to sell the
issue is to enter into private negotiations with another bank.

When the traders of liquid positions are operating under VaR limits they require real-time,
intra-day VaR estimates to assess the effect of any proposed trade on their current level of VaR.
The more liquid the risk, the shorter the time period over which the risk needs to be assessed,
i.e. the shorter the risk horizon for the VaR model. Liquid risks tend to evolve rapidly and
it would be difficult to represent the dynamics of these risks over the long term. Markets
also tend to lose liquidity during stressful and volatile periods, when there can be sustained
shortages of supply or demand for the financial instrument. Hence, the risk horizon should be
increased when measuring VaR in stressful market circumstances.

At the desk level a risk manager often assesses only the liquid market risks, initially at least
over a daily risk horizon. This will then be extended to a 10-day risk horizon when using an
internal VaR model to assess minimum risk capital for regulatory purposes, and to a longer
horizon (e.g. 1 year) for internal capital allocation purposes and for credit rating agencies.

The confidence level also depends on the application. For instance:

e VaR can be used to assess the probability of company insolvency, or the probability of
default on its obligations. This depends on the capitalization of the company and the risks
of all its positions over a horizon such as 6 months or 1 year. Credit rating agencies would
only award a top rating to those companies that can demonstrate a very small probability
of default, such as 0.03% over the next year for an AA rated company. So companies
aiming for AA rating would apply a confidence level of 99.97% for enterprise-wide VaR
over the next year.

e Regulators that review the regulatory capital of banks usually allow this capital to be
assessed using an internal VVaR model, provided they have approved the model and that
certain qualitative requirements have also been met. In this case a 99% confidence level

25 However, to assess capital adequacy regulators and credit rating agencies tend to set a single risk horizon, such as 1 year, for
assessing all risks in the enterprise as a whole.
2% A private placement is when an investment bank underwrites a company’s bond issue and then buys the whole issue itself.
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must be applied in the VaR model to assess potential losses over a 2-week risk horizon,
i.e. a 1% 10-day VaR. This figure is then multiplied by a factor of between 3 and 4 to
obtain the market risk capital requirement.”

e When setting trading limits based on VaR, risk managers may take a lower confidence
level and a shorter risk horizon. For instance, the manager may allow traders to operate
under a 5% 1-day VaR limit. In this case he is 95% confident that traders will not exceed
the VaR overnight while their open positions are left unmanaged. By monitoring the
traders’ losses that exceed his VaR limit, further scrutiny could be given to traders who
exceed their limit too often. A higher confidence level than 95% or a longer risk horizon
than 1 day may give traders too much freedom.

1IV.1.4.2 Discounted P&L

VaR assumes that current positions will remain static over the chosen risk horizon, and that we
only assess the uncertainty about the value of these positions at the end of the risk horizon.?
Assuming a portfolio remains static means that we are going to assess the uncertainty of the
unrealized O theoretical P&’L, i.e. the P&L based on a static portfolio. However, the realized
or actual P&L accounts for the adjustment in positions as well as the costs of all the trades
that are made in practice.

To have meaning today, any portfolio value that might be realized h trading days into the
future requires discounting. That is, the P&L should be expressed in present value terms,
discounting it using a risk free rate, such as the London Inter Bank Offered Rate (LIBOR).?®

Hence, in the following when we refer to ‘P&L’ we mean the discounted theoretical h-day
P&L, i.e. the P&L arising from the current portfolio, assumed to be static over the next h
trading days, when expressed in present value terms.

Let P, denote the value of the portfolio and let B,, denote the price of a discount bond that
matures in h trading days, both prices being at the time ¢ when the VaR is measured. The value
of the portfolio at some future time ¢ + h, discounted to time ¢, is B, P,,;, and the discounted
theoretical P&L over a risk horizon of h trading days is therefore

Discounted h-day P&L = B,,P,,, — P.. (Iv.1.7)

Although we can observe the portfolio value and the value of the discount bond at time ¢,
the portfolio value at time ¢ 4 h is uncertain, hence the discounted P&L (IV.1.7) is a random
variable. Measuring the distribution of this random variable is the first step towards calculating
the VaR of the portfolio.

IV.1.4.3 Mathematical Definition of VaR

We have given a verbal definition of VaR as the loss, in present value terms, due to market
movements, that we are reasonably confident will not be exceeded if the portfolio is held static
over a certain period of time. We cannot say anything for certain about a portfolio’s P&L
because it is a random variable, but we can associate a confidence level with any loss. For

27 See Sections 1V.6.4.2 and 1V.8.2.4 for further details.

28 See Section 1V.1.5.2 for a full discussion of what is meant by a ‘static’ portfolio.

29 LIBOR has become the standard reference rate for discounting short term future cash flows between banks to present value terms.
See Section 111.1.2.5 for further details.
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instance, a 5% daily VaR, which corresponds to a 95% level of confidence, is a loss level that
we anticipate experiencing with a frequency of 5%, when the current portfolio is held for 24
hours. Put another way, we are 95% confident that the VaR will not be exceeded when the
portfolio is held static over 1 day. Put yet another way, we anticipate that this portfolio will
lose the 5% VaR or more one day in every 20. Sometimes we quote results in terms of the
confidence level 1 — a instead of the significance level a. For instance, if

1% 1-day VaR = $2 million,

then we are 99% confident that we would lose no more than $2 million from holding the
portfolio for 1 day.

A loss is a negative return, in present value terms. In other words, a loss is a negative excess
return. If the portfolio is expected to return the risk free discount rate, i.e. if the expected
excess return is zero, then the a% VaR is the o quantile of the discounted P&L distribution.
For instance, the 1% VaR of a 1-day discounted P&L distribution is the loss, in present value
terms that would only be equalled or exceeded one day in 100. Similarly, a 5% VaR of a
weekly P&L distribution is the loss that would only be equalled or exceeded one week in 20.

Assuming the portfolio returns the risk free rate the discounted P&L has expectation zero.
The two VaR estimates depicted in Figure 1V.1.2 assume this, and also that discounted P&L is
normally distributed. In the figure we assume daily P&L has a standard deviation of $4 million
and weekly P&L has a standard deviation of $9 million.

0.1
— Daily P&L Density
Weekly P&L Density
00754
Avrea under
daily curve =
o054+
Area under
weekly curve =
0.05
00254
o
-25 -20 -15

| 50 1-week VaR=$14.8m |

| 1% 1-day VaR=$9.3m |

Figure 1V.1.2 Illustration of the VaR metric

In mathematical terms the 1000% h-day VaR is the loss amount (in present value terms)
that would be exceeded with only a small probability o when holding the portfolio static over
the next h days. Hence, to estimate the VaR at time ¢ we need to find the a quantile x,, , of the
discounted h-day P&L distribution. That is, we must find x;, , such that
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P(Bhtpt+h —P, < xht,a) =a, (|V18)

and then set VaR,, , = —x;.... We write VaR,, , when we want to emphasize the time ¢ at which
the VaR is estimated. However, in the following chapters we usually make explicit only the
dependence of the risk metric on the two basic parameters, i.e. h (the risk horizon) and « (the
significance level), and we drop the dependence on ¢.

When VaR is estimated from a P&L distribution it is expressed in value (e.g. dollar) terms.
However, we often prefer to analyse the return distribution rather than the P&L distribution.
P&L is measured in absolute terms, so if markets have been trending the P&Ls at different
moments in time are not comparable. For instance, a loss of €10,000 when the portfolio has
a value of €1 million has quite a different impact than a loss of €10,000 when the portfolio
has a value of €10 million. We like to build mathematical models of returns because they are
measured in relative terms and are therefore comparable over long periods of time, even when
price levels have trended and/or varied considerably. But when the portfolio contains long and
short positions, or when the risk factors themselves can take negative values, the concept of
a return does not make sense, since the portfolio could have zero value. In that case VaR is
measured directly from the distribution of P&L.

When VaR is estimated from a return distribution it is expressed as a percentage of the
portfolio’s current value. Since the current value of the portfolio is observable it is not a
random variable. So we can perform calculations on the return distribution and express VaR
as a percentage of the portfolio value and, if required, we can then convert the result to value
terms by multiplying the percentage VaR by the current portfolio value.®

In summary, if we define the discounted h-day return on a portfolio as the random variable

B tPt - Pt
X = —— (IV.1.9)
P,
then we can find x;, ., the a quantile of its distribution, that is,
P(Xht < xht,a) =a, (IVllO)

and our current estimate of the 100a% h-day VaR at time ¢ is:

VAR, — | ~me @S percentage of the portfolio value P,, (IV.1.11)
"7 | =x..P, when expressed in value terms. B

IV.15 FOUNDATIONS OF VALUE-AT-RISK MEASUREMENT

In this section we derive a formula for VaR under the assumption that the returns on a linear
portfolio are i.i.d. and normally distributed. After illustrating this formula with a numerical
example we examine the assumption that the portfolio remains static over the risk horizon

30 A VaR model is based on forward looking returns. So when we use a risk model to estimate h-day VaR we are producing a forecast
of risk over the next h days. In much the same way as implied volatility is automatically defined as a forecast because it is based on
option prices, VaR is automatically defined as a forecast: it summarizes the risk that the future return on a portfolio will be different
from the risk free rate. But we shall refrain from using the terms “VaR estimate’ and “VaR forecast’ interchangeably, because we may
want our risk model to really forecast VaR, i.e. to produce a forecast of what VaR will be some time in the future.
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and show that this assumption determines the way we should scale the VaR over different risk
horizons. Then we explain how the VaR formula should be adjusted when the expected excess
return on the portfolio is non-zero. As the expected return deviates more from the risk free
rate this adjustment has a greater effect, and the size of the adjustment also increases with the
risk horizon. The adjustment can be important for risk horizons longer than a month or so.
But when the risk horizon is relatively short, any assumption that returns are not expected to
equal the risk free rate has only a very small impact on the VaR measure, and for this reason
it is often ignored.

1IV.1.5.1 Normal Linear VaR Formula: Portfolio Level

Suppose we only seek to measure the VaR of a portfolio without attributing the VaR to dif-
ferent risk factors. We also make the simplifying assumption that the portfolio’s discounted
h-day returns are i.i.d. and normally distributed. For simplicity of notation we shall, in this
section, write the return as X, dropping the dependence on both time and risk horizon. Thus
we assume

X N(w, o). (IV.1.12)
We will derive a formula for x,, the a quantile return, i.e. the return such that P(X < x,) = .

Then the 1000% VaR, expressed as a percentage of the portfolio value, is minus this o quantile.
Using the standard normal transformation, we have

P(X<xa)=P<X_”“<"°‘_”>=p<2<x°‘_”), (IV.1.13)

o o o

where Z ~ N(0, 1). So if P(X < x,) =, then

P<Z< x‘"“) —a.
o

But by definition, P(Z < ®~Ya)) =a, SO

Xo — W

= & Ya) (IV.1.14)

where @ is the standard normal distribution function. For instance, ®~%0.01) = 2.3264.

But x, = —VaR, by definition, and ®~%a) = —® 41 — ) by the symmetry of the standard
normal distribution. Substituting these into (IV.1.14) yields an analytic formula for the VaR
for a portfolio with an i.i.d. normal return, i.e.

VaR, = &1 —a)o — .
If we want to be more precise about the risk horizon of our VaR estimate, we may write
VaR,, = ® 11— w)a, — . (1V.1.15)
This is a simple formula for the 1000% h-day VaR, as a percentage of the portfolio value,

when the portfolio’s discounted returns are i.i.d. normally distributed with expectation ., and
standard deviation o;,.



Value at Risk and Other Risk Metrics 19

To obtain the VaR in value terms, we simply multiply the percentage VaR by the current
value of the portfolio:

VaR,, , = (@11 — a)o, — )P, (IV.1.16)
where P, is the value of the portfolio at the time ¢ when the VaR is measured. Note that
when we express VaR in value terms, VaR will depend on time, even under the normal i.i.d.
assumption using a constant mean and standard deviation for the portfolio return.

EXAMPLE IV.1.4: VAR WITH NORMALLY DISTRIBUTED RETURNS

What is the 10% VaR over a 1-year horizon of $2 million invested in a fund whose annual
returns in excess of the risk free rate are assumed to be normally distributed with mean 5%
and volatility 12%7?

SOLUTION Let the random variable X denote the annual returns in excess of the risk free
rate, so we have

X ~N(0.05,0.12%).

We must find the 10% quantile of the discounted return distribution, i.e. that x such that
P(X <x)=0.1. So we apply the standard normal transformation to X, and then find x such that

P(Z <= 0‘05) —0.1.

0.12

From standard normal statistical tables or using NORMSINV(0.1) in Excel. We know that
P(Z <—1.2816) =0.1.

Hence,
x—0.05
0.12

Thus the 10% 1-year VaR is 10.38% of the portfolio value. With $2 million invested in the
portfolio the VaR is $2m x 0.1038 = $207,572. In other words, we are 90% confident that we
will lose no more than $207,572 from investing in this fund over the next year.

=-1.2816 or x=-1.2816x 0.1240.05=—-0.1038.

Since we have assumed returns are i.i.d., the formula (1V.1.15) for the normal VaR, expressed
as a percentage of the portfolio value, depends on the risk horizon k but it does not depend on
time. That is, under the i.i.d. normal assumption VaR is a constant percentage of the portfolio
value. However, to estimate VaR we need to use forecasts of o, and w, — forecasts that are
based on an i.i.d. model for returns — and in practice these forecasts will change over time
simply because the sample data change over time, or because our scenarios change over time.
Hence, even though the model predicts that VaR is a constant percentage of the portfolio value,
the estimated percentage will change over time, merely due to sample variations.

It is important to realize that all the problems with moving average models of volatility that
we have discussed in Chapter 11.3 will carry over to the normal linear VaR model. Since the
returns are assumed to have a constant volatility, this should be estimated using an equally
weighted moving average, which gives an unbiased estimator of the returns variance. But
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equally weighted average volatility estimates suffer from ‘ghost features’. As a result, VaR
will remain high for exactly T periods following one large extreme return, where T is the
number of observations in the sample. Then it jumps down T periods later, even though
nothing happened recently. See Section 11.3.7 for further details.

In Section 1V.3.3.1 we show that the choice of T has a very significant impact on an
equally weighted VaR estimate — in fact, this choice has much more impact than the choice
between using a normal linear (analytic) VaR estimate as above, and an estimate based on
historical simulation. The larger T is, the less risk sensitive is the resulting VaR estimate,
i.e. the less responsive is the VaR estimate to changing market conditions. For this reason
many institutions use an exponentially weighted moving average (EWMA) methodology for
VaR estimation, e.g. using EWMA to estimate volatility in the normal linear VaR formula.
These estimates, if not the estimator, take account of volatility clustering so that EWMA
VaR estimates are more risk sensitive than equally weighted VaR estimates. For example, the
RiskMetrics™ methodology and supporting database allows analysts to choose between these
two approaches. See Section 11.3.8 for further details.

1V.1.5.2 Static Portfolios

Market VaR measures the risk of the current portfolio over the risk horizon, and in order to
measure this we must hold the portfolio over the risk horizon. A portfolio may be specified at
the asset level by stating the value of the holdings in each risky asset. If we know the value of
the holdings then we can find the portfolio value and the weights on each asset. Alternatively,
we can specify the portfolio weights on each asset and the total value of the portfolio. If we
know these we can determine the holding in each asset.

Formally, consider a portfolio with (long or short) holdings {ni, n,, ..., n,} in k risky assets,
S0 n; is the number of units long (n; > 0) or short (n; < 0) in the ith asset, and denote the ith
asset price at time t by p,,. Then the value of the holding in asset i at time ¢ is is n;p,., and the
portfolio value at time ¢ is

k
P, = anpn-
i=1
We can define the portfolio weight on the ith asset at time ¢ as

_ Nipi

P,

Wi

In a long-only portfolio each n; > 0 and so P, > 0. In this case, the weights in a fully funded
portfolio sum to one.

Note that even when the holdings are kept constant, i.e. the portfolio is not rebalanced,
the value of the holding in asset i changes whenever the price of that asset changes, and the
portfolio weight on every asset changes, whenever the price of one of the assets changes. So
when we assume the portfolio is static, does this mean that the portfolio holdings are kept
constant over the risk horizon, or that the portfolio weights are kept constant over the risk
horizon? We cannot assume both. Instead we assume either

e no rebalancing — the portfolio holdings in each asset are kept constant, so each time the
price of an asset changes, the value of our holding in that asset will change and hence all
the portfolio weights will change; or
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® rebalancing to constant weights — to keep the portfolio weights constant we must
rebalance all the holdings whenever the price of just one asset changes.

Similar comments apply when a portfolio return (or P&L) is represented by a risk factor
mapping. Most risk factor sensitivities depend on the price of the risk factor. For instance, the
delta and the gamma of an option depend on the underlying price, and the PV01 of a cash
flow depends on the level of the interest rate at that maturity. So when we say that a mapped
portfolio is held constant, if this means that the risk factor sensitivities are held constant then
we must rebalance the portfolio each time the price of a risk factor changes.

The risk analyst must specify his assumption about rebalancing the portfolio over the risk
horizon. We shall distinguish between the two cases described above as follows:

e Static VaR assumes that no trading takes place during the risk horizon, so the holdings
are kept constant, i.e. there is no rebalancing. Then the portfolio weights (or the risk
factor sensitivities) will not be constant: they will change each time the price of an asset
(or risk factor) changes. This assumption is used when we estimate VaR directly over the
risk horizon, without scaling up an estimate corresponding to a short risk horizon to an
estimate corresponding to a longer risk horizon. It does not lead to a tractable formula
for the scaling of VaR to different risk horizons, as the next subsection demonstrates.

e Dynamic VaR assumes the portfolio is continually rebalanced so that the portfolio
weights (or risk factor sensitivities, if VaR is estimated using a risk factor mapping)
are held constant over the risk horizon. This assumption implies that the same risks are
faced every trading day during the risk horizon, if we also assume that the asset (or risk
factor) returns are i.i.d., and it leads to a simple scaling rule for VaR.

IV.1.5.3 Scaling VaR

Frequently market VaR is measured over a short-term risk horizon such as 1 day and then
scaled up to represent VaR over a longer risk horizon. How should we scale a VaR that is
estimated over one risk horizon to a VaR that is measured over a different risk horizon? And
what assumptions need to be made for such a scaling?

The most tractable framework for scaling VaR is based on the assumption that the returns
are i.i.d. normally distributed and that the portfolio is rebalanced daily to keep the portfolio
weights constant. Similarly, if the VaR is based on a risk factor mapping, it is mathematically
tractable to assume the risk factor sensitivities are constant over the risk horizon, and that
the risk factor returns are i.i.d. and have a multivariate normal distribution. As a result the
returns on a linear portfolio will be i.i.d. normally distributed.®* So in the following we derive
a formula for scaling VaR from a 1-day horizon to an h-day horizon under this assumption.

For simplicity of notation, from here onward we shall drop the ¢ from the VaR notation,
unless it is important to make explicit the time at which the VaR estimate is made. Also, in
this section we do not include the discounting of the returns (or, equivalently, the expression
of returns as excesses over the risk free rate) since this does not affect the scaling result, and it
only makes the notation more cumbersome. Hence, to derive formulae (IV.1.18) and (1V.1.21)
below we may, without loss of generality, assume the risk free rate is zero.

31 Note that this assumption is very unrealistic, even for linear portfolios but especially for portfolios containing options. Since options
prices are non-linear functions of the underlying price, if we assume the underlying returns are normally distributed (as is often
assumed in option theory) then the returns on a portfolio containing options cannot be normally distributed.
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Suppose we measure VaR over a 1-day horizon, and assume that the daily return is i.i.d.
normal. Then we have proved above that the 1-day VaR is given by

VaR, =@ (1 —a)o; — 1 (IV.1.17)

where ; and o, are the expectation and standard deviation of the normally distributed daily
returns. We now use a log approximation to the daily discounted return. To be more specific,

we let®?
X %PHl_Pt%ln Pc+l
1t Pt b

where P, denotes the portfolio price at time t. We use this approximation because it is con-
venient, i.e. log returns are additive. That is, the h-day discounted log return is the sum of h
consecutive daily discounted log returns. Since the sum of normal variables is another normal
variable, the h-day discounted log returns are normally distributed with expectation ., =hy,
and standard deviation o, = v/ho, as proved in Section 11.3.2.1.

We now approximate the h-day log return with the ordinary h-day return, and deduce
that this is (approximately) normally distributed. Then the h-day VaR is given by the
approximation

VaR,, ~ @11 —a) vVhor —h . (IV.1.18)

This approximation is reasonably good when h is small, but as h increases the approximation
of the h-day log return with the ordinary h-day return becomes increasingly inaccurate.

What happens if we drop the assumption of independence but retain the assumption that the
returns have identical normal distributions? In Section 1V.2.2.2 we prove that if the daily log
return follows a first order autoregressive process with autocorrelation g then the expectation
of the h-day log return is ., = hy; (S0 autocorrelation does not affect the scaling of the mean)
but the standard deviation of the h-day log return is

o, =Vh oy, (IV.1.19)
with
h=h+20(1—0) * (h—1(L—0) —0l—0" ). (IV.1.20)
Hence, in this case,
VaR, . ~ & (1 — )k o1 — b i, (IV.1.21)

with h defined by (1V.1.20).

EXAMPLE IV.1.5: SCALING NORMAL VAR WITH INDEPENDENT AND WITH AUTOCORRE-
LATED RETURNS

A portfolio has daily returns, discounted to today, that are normally and identically distributed
with expectation 0% and standard deviation 1.5%. Find the 1% 1-day VaR. Then find the
1% 10-day VaR under the assumption that the daily excess returns (a) are independent,

32 Here we use the forward looking return because VaR measures risk over a future horizon, not over the past.
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and (b) follow a first order autoregressive process with autocorrelation 0.25. Does positive
autocorrelation increase or decrease the VaR?

SOLUTION  Using formula (1V.1.17), the 1% 1-day VaR is
VaR; o0; = ®%(0.99) x 0.015 = 0.034895,

i.e. 3.4895% of the portfolio value. Now we scale the VaR under the assumption of i.i.d.
normal returns. By (1V.1.18) the 1% 10-day VaR is approximately /10 times the 1% 1-day
VaR, because the discounted expected return is zero. So the 1% 10-day VaR is approximately

VaRyg,0.01 = /10 x 3.4895% = 11.0348%.

Finally, with h = 10 and ¢ = 0.25 the scaling factor (IV.1.20) is not 10, but 15.778. So
under the assumption that returns have an autocorrelation of 0.25, the 1% 10-day VaR is
approximately

VaRyg,0.01 =+/15.778 x 3.4895% = 13.8608%.

A positive autocorrelation in daily returns increases the standard deviation of h-day returns,
compared with that of independent returns. Hence, positive autocorrelation increases VaR,
and the longer the risk horizon the more the VaR will increase. On the other hand, a negative
autocorrelation in daily returns will decrease the VaR, especially over long time horizons.
Readers may verify this by changing the parameters in the spreadsheet for this example.

Scaling VaR when returns are not normally distributed is a complex question to answer, so we
shall address it later in this book. In particular, see Sections 1V.2.8 and 1V.3.2.3.

IV.1.5.4 Discounting and the Expected Return

We now examine the effect of discounting returns on VaR and ask two related questions:

e Over what time horizon does it become important to include any non-zero expected
excess return in the VaR calculation?

e |f we fail to discount P&L in the VaR formula, i.e. if we do not express returns as excess
over the risk free rate, does this have a significant effect on the results?

Banking regulators often argue that the expected return on all portfolios should be equal
to the risk free rate of return. In this case the discounted expected P&L will be zero or, put
another way, the expected excess return will be zero. If we do assume that the expected excess
return is zero the normal linear VaR formula becomes even simpler, because the second term
is zero and the h-day VaR, expressed as a percentage of the current portfolio value, is just the
standard deviation of the h-day return, multiplied by the standard normal critical value at the
confidence level 1 — a.

The situation is different in portfolio management. When quoting risk adjusted performance
measures to their clients, fund managers often believe that they can provide returns greater
than the risk free rate by judicious asset allocation and stock selection. However, expectations
are highly subjective and could even be a source of argument between a fund manager and his



24 Value-at-Risk Models

client, or between a bank and its regulator. Corporate treasurers, on the other hand, are free to
assume any expected return they wish. They are not constrained by regulators or clients.

We now prove that when portfolios are expected to return a rate different from the risk free
rate this should be included as an adjustment to the VaR. This is obvious in the normal i.i.d.
framework described above, since the discounted mean return appears in the VaR formula.
But it is also true in general. To see why, consider the distribution of P&L at time ¢ + h, as
seen from the current time ¢. This is the distribution of P,,, — E,(P,,,,) where E,(P,,;) is the
conditional expectation seen from time ¢ of the portfolio value at time ¢ + h. That is, it is
conditional on the information available up to time ¢.

Denote by y,, , the a quantile of this distribution, discounted to time ¢. That is,

P(By,(Peys, — E,(Poys)) < i) =, (IV.1.22)

where B, is the value at time ¢ of a discount bond maturing in h trading days. Now (IV.1.22)
may be rewritten as

P(Bhtpt+h - Pt < Yht,a + (BhtEt(PHrh) - Pt)) =,
or as
P(Bhtpt+h —P, <Yht,a — Sht) =a, (|V123)

where ¢, = P, — B,.E.(P;) is the difference between the current portfolio price and its
expected future price, discounted at the risk free rate.*

Note that ¢, is only zero if the portfolio is expected to return the risk free rate, i.e. if
E.(P.4) = (By,) 'P,. Otherwise, comparing (1V.1.23) with (1V.1.8), we have

Xht,o = Vhe,o — Eht = VaRht,a = " Yht,a + . (IV124)

Hence, the VaR is minus the a quantile of the discounted P&L distribution plus e,,, if this is
not zero. When the expected return on the portfolio is greater than the risk free rate of return,
e, Will be negative, resulting in a reduction in the portfolio VaR. The opposite is the case if
the portfolio is expected to return less than the risk free rate, and in this case the VaR will
increase.

The following example shows that this adjustment term e,,, which we call the drift adjust-
ment t0 the VaR, can be substantial but only when VaR is measured over a risk horizon of
several months or more.

EXAMPLE IV.1.6: ADJUSTING VAR FOR NON-ZERO EXPECTED EXCESS RETURNS

Suppose that a portfolio’s return is normally distributed with mean 10% and standard deviation
20%, both expressed in annual terms. The risk free interest rate is 5% per annum. Calculate
the 1% VaR as a percentage of the portfolio value when the risk horizon is 1 week, 2 weeks, 1
month, 6 months and 12 months.

SOLUTION The calculations are set out in the spreadsheet and results are reported in
Table 1V.1.3 below. As anticipated, the reduction in VaR arising from the positive expected

33 S0 if the portfolio price follows a martingale process, ey, is zero.
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excess return increases with the risk horizon. Up to 1 month ahead, the effect of the expected
excess return is very small: it is less than 0.5% of the portfolio value. However, with a risk
horizon of one year (as may be used by hedge funds, for instance) the VaR can be reduced by
almost 5% of the portfolio value if we take account of an expected excess return of 5%.

Table 1V.1.3 Normal VaR with drift adjustment

Risk horizon 0.25 0.5 1 3 6 12
(months)

Mean return 0.21% 0.42% 0.83% 2.50% 5% 10%
Volatility of return 3% 4% 6% 10% 14% 20%
Discount factor 0.99896 0.99792 0.99585 0.98765 0.97561 0.95238
Mean return* 0.10% 0.21% 0.41% 1.23% 2.44% 4.76%
\olatility of return* 2.88% 4.07% 5.75% 9.88% 13.80% 19.05%
Lower 1% quantile —0.06605 —0.09270 —0.12961 —0.21742 —0.29658 —0.39549
1% VaR** 6.71% 9.48% 13.38% 22.98% 32.10% 44.31%
1% VaR 6.60% 9.27% 12.96% 21.74% 29.66% 39.55%
Difference 0.10% 0.21% 0.41% 1.23% 2.44% 4.76%

Note: * denotes that the quantities are discounted, and ** denotes that the VaR is based on a zero mean excess return.

Readers may use the spreadsheet to verify the following:

e Keep the mean return at 10% but change the volatility of the portfolio return. This has a
great effect on the values of the VaR estimates but it has no influence on the difference
shown in the last row; the only thing that affects the difference between the non-drift
adjusted VaR and the drift adjusted VaR is the expected excess return (and the portfolio
value, if the VaR is expressed in value terms).

e Keep the portfolio volatility at 20%, but change the expected return. This shows that
when the portfolio is expected to return x% above the risk free rate, the reduction in VaR
at the 1-year horizon is a little less than x% of the portfolio value.*

IV.1.6 RISK FACTOR VALUE AT RISK

In the previous section we described one simple model for measuring the VaR of a linear
portfolio at the portfolio level. We also obtained just one figure, for the total VaR of the
portfolio, but this is not where VaR measurement stops — if it were, this book would be con-
siderably shorter than it is. In practice, VaR measures are based on a risk factor mapping of
the portfolio, in which case the model provides an estimate of the systematic VaR, also called
the total risk factor VaR. The systematic VaR may itself be decomposed into the VaR due to
different types of risk factors. The specific VaR, also called residual VaR, measures the risk
that is not captured by the mapping.

A risk factor mapping entails the construction of a model that relates the portfolio return,
or P&L, to variations in its risk factors. For example, with an international equity portfolio

34 1t can be shown that the reduction in 1-year VaR when we take account of an expected return that is different from the risk free rate
of return is approximately equal to (E(R) — Ry) x (1 —Ry), where E(R) is the expected return on the portfolio and Ry is the risk free
rate over the risk horizon of the VaR model.
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having positions on cash equity and index futures we would typically consider variations in
the following risk factors:

major market spot equity indices (such as S&P 500, FTSE 100, CAC 40);

spot foreign exchange (forex) rates (such as $/£, $/€);

dividend yields in each major market;

spot LIBOR rates of maturity equal to the maturity of the futures in the domestic and
foreign currencies (such as USD, GBP and EUR).

In the factor model, the coefficient parameters on the risk factor variations are called the
portfolio’s sensitivities to variations in the risk factors. For instance, the international equity
portfolio above has:

e asensitivity that is called a beta with respect to each of the major stock indices;

e asensitivity that is one with respect to each exchange rate;

e a sensitivity that is called a PV01 with respect to each interest rate, or each dividend
yield.®

The whole of Chapter I11.5 was devoted to describing risk factor mappings and risk factor
sensitivities for different types of portfolios, and it is recommended that readers are familiar
with this, or similar material.

1IV.1.6.1 Motivation

The process of risk attribution is the mapping of total risk factor VaR to component VaRs
corresponding to different types of risk factors. The reason why risk managers map portfolios
to their risk factors is that the analysis of the components of risk corresponding to different
risk factors provides an efficient framework for hedging these risks, and for capital allocation.
Risk factors are often common to several portfolios, for instance:

e Foreign exchange rates are common to all international portfolios, whether they contain
equities, commodities or bonds and other interest rate sensitive instruments. The
enterprise-wide exposures to forex rates are often managed centrally, so that these risks
can be netted across different portfolios. But a manager of an international equity or
bond portfolio will still want to know his forex risk, as measured by his forex VaR. So
will the risk manager and senior managers, since they need to know which activities are
the main contributors to each type of risk.

e Zero-coupon yield curves are common to any portfolio containing futures or forwards, as
well as to interest rate sensitive portfolios. And if the portfolio is international then yield
curves in different currencies are risk factors. Interest rate risk is the uncertainty about
the present value of future cash flows, and this changes as discount rates change from

35 Note that the PVO1 is measured in value (e.g. dollar) terms but the first two sensitivities are measured in percentage terms; to
convert these into value terms we just multiply by the amount invested in each country, in domestic currency. Or, to convert the P\V01
to percentage terms, divide it by the total amount invested in that portfolio which has exposure to that yield curve.
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day to day. Except for portfolios consisting entirely of interest rate sensitive instruments,
interest rate risk is often one of the smallest risks. The firm can use the VaR model to net
these risks when aggregating interest rate VaR across different activities.

Another reason why we base VaR on a risk factor mapping is that typical portfolios are too
large to measure VaR by mapping to all of its instruments. It is technically infeasible to analyse
the risk of most portfolios without the aid of risk factor mapping. For example, measuring VaR
at the level of each asset in a stock portfolio containing 1000 stocks requires modelling the
multivariate distribution of 1000 stock returns. Usually we try to summarize this distribution
using only the returns covariance matrix, but in this example we would still have to deal with
an enormous matrix.

Only a few portfolios are so small that they do not require risk factor mapping. For instance,
we do not really need to map a private investor’s portfolio that has cash positions in only a
few stocks, or any other small portfolio containing similar and straightforward positions. But
small, cash portfolios are not the business of financial institutions. Typically, the institution
will handle tens of thousands of complex positions with exposures to hundreds of different
risk factors. Hence, even measuring VaR at the risk factor level is a formidable challenge.

Another advantage of risk factor mapping is that it provides a convenient framework for the
daily work of a market risk manager. He requires many stress tests of current positions and an
overall assessment of whether capital is available to cover these risks. Stress tests are usually
conducted by changing risk factor values — firstly because this gives the risk manager further
insight into his risk attribution, and secondly because it would be impossible to investigate
different scenarios for each individual asset.

When we measure VaR on portfolios that are mapped to risk factors there are three
important sources of model risk in the VaR estimate:

e The choice of risk factor mapping is subjective. A different risk manager might choose
a different set of risk factors.

e The risk factor sensitivities may have estimation errors. For stock portfolios the risk
factor sensitivities, which are called risk factor betas, depend on a model, and their
estimation is subject to sampling error, as we have seen in Section 11.1.2.

e The specific risk of the portfolio is ignored. By measuring VaR based on a risk factor
mapping, all we capture is the systematic VaR.

There are many other sources of model risk in a VaR model and a full discussion of this is
given in Chapter IV.6.

IV.1.6.2 Normal Linear Equity VaR

We now provide some very simple examples of the measurement of VaR based on a risk factor
mapping. In this subsection we consider the case of a cash equity portfolio with excess return
Y and we assume it has a single risk factor, such as a broad market index, with excess return X.
Then the factor model may be written

Y, =a+BX, +e, (IV.1.25)
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where & and (3 are constant parameters and e, is the specific return.®® We suppose the risk
factor excess returns X are normally distributed, and that the expected excess return over the
next h days is w, with a standard deviation of o,. Then the portfolio’s excess returns due to
the movements in the index will also be normally distributed, with expectation & + S, and
standard deviation 3oy,.

Since the portfolio’s alpha is idiosyncratic to the portfolio, it does not enter the systematic
part of the risk; instead it enters the specific risk component of the VaR. Thus to measure
the systematic VaR of the portfolio, which is here called the equity VaR since the only risk
factor is an equity index, we assume the portfolio’s excess return are normally distributed with
expectation (3, and standard deviation 3o;.

Now, using the same argument as in Section IV.1.5.1 when we derived the normal linear
VaR formula at the portfolio level, the normal linear systematic VaR of the portfolio is

Equity VaR, , = B(® (1 — a)o, — ). (IV.1.26)

The following example illustrates a simple application of this formula for a two-stock portfolio
with one risk factor.

EXAMPLE IV.1.7: EQUITY VAR

A portfolio contains cash positions on two stocks: $1 million is invested in a stock with a beta
of 1.2 and $2 million is invested in a stock with a beta of 0.8 with respect to a broad market
index. If the excess returns on the index are i.i.d. and normally distributed with expectation
5% and volatility 20% per annum, what is the 1% 10-day VaR of the portfolio?

SOLUTION  The net portfolio beta is measured in dollar terms as
Bs=%$1Im x 1.2+ $2m x 0.8 = $2.8m.

Note that using the dollar beta in (IV.1.26) gives the equity VaR in dollar terms, not as a
percentage of the portfolio value. The 10-day expected excess return on the risk factor is

K1 =0.05 x 10/250 = 0.2%,
and the 10-day standard deviation of the excess returns on the market index is
010=0.2 x (10/250)"/* =0.2/5 = 4%.
Hence, the 1% 10-day equity VaR is

Equity VAR 00, = $2.8M x (2.32635 x 4% — 0.2%) = $254,951.

36 The only reason why we place a tilde ‘~’ over o here is to avoid confusion with the o that denotes the significance level of the VaR
estimate.
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IV.1.6.3 Normal Linear Interest Rate VaR

This subsection introduces the interest rate VaR of bonds, swaps and loans portfolios that can
be represented as a series of cash flows. In Section 111.5.2.1 we explained how to represent
an interest rate sensitive portfolio using an approximate linear risk factor model, called a
cash-flow map, the salient details of which are summarized below for convenience.*

The discounted P&L on the portfolio is the net change in present value of the entire cash
flow series, and the linear approximation derived in Section 111.5.2.1 is

APV~ — Z PVOL1, x AR,.

i=1

Alternatively, using the matrix algebra that was introduced in Chapter 1.2, this may be written
in matrix form as

APV~ —@'Ar, (IV.1.27)

where

e 0= (PV01,,...,PV01,) is the vector of risk factor sensitivities, that is, 0 is a vector
whose ith element is the PVO1 of the cash flow that is mapped to the ith vertex;*® and

e Ar=(ARy,...,AR,) is the vector of changes (measured in basis points) in interest
rates at the standard maturities (which are also called the vertices of the risk factor

mapping).

Since the PVO1 is the present value Of a basis point change, the change in the portfolio value
given by the risk factor representation (1V.1.27) is already measured in present value terms.

Suppose that Ar has a multivariate normal distribution with mean . and covariance matrix
. Then, based on the linear mapping (1V.1.27), the discounted P&L also has a normal dis-
tribution with expectation —0'w. and variance 6'260. It is particularly important to understand
the quadratic form 6’26 for the variance, since this will be used many times in Chapter 1V.2.%
The minus sign appears in the expectation because the PV01 measures the sensitivity to a one
basis point fall in interest rates. Thus, applying the normal linear VaR formula (1V.1.15), the
VaR of the cash flow is

VaR, =& {1 —a)vVo'Q0+ 0.

We often assume that the same interest rate risk factors are used for discounting, in which
case 0'w, the expected change in portfolio value, is zero. We also measure the covariance
matrix over a specific h-day period. Thus, denoting the h-day interest rate covariance matrix
by ,, the formula for the normal linear 1000% h-day VaR for a cash flow becomes

Interest Rate VaR, , = ® (1 — a)y/0'2,0. (IV.1.28)

37 The mapping procedure for creating the cash flows of different maturities to standard vertices is quite complex, and for this we refer
readers to Section 111.5.3. This is a long section that covers different cash-flow mappings in detail.

38 See Section 111.1.8 for the definition of PV01 and an approximation that is useful for calculating the PV01.

39 Readers who are not entirely comfortable with this should consult Section 1.2.4.2 for further information.
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EXAMPLE IV.1.8: NORMAL VAR OF A SIMPLE CASH FLOW

Find the 1% 10-day VaR of a cash flow that is mapped to a 1-year and a 2-year vertex with
PV01 of $50 and $75, respectively. Assume the absolute changes in 1-year and 2-year interest
rates over the next 10 days have a multivariate normal distribution with expectation 0, corre-
lation 0.9 and with annual volatilities of 100 basis points for the change in the 1-year rate and
80 basis points for the change in the 2-year rate.

SoLUTION We use the formula (IV.1.28) with h =10, a =0.01, 6 = (50, 75)" and where
2, is the 10-day covariance matrix of the risk factor changes, expressed in basis points. We
have the annual covariance matrix

o 100? 0.9 x 100 x 80
—\ 0.9x100 x 80 802 ’
So the 10-day matrix is
Q. — 10 1002 0.9x100x80Y) (400 288
197250 \ 0.9 x 100 x 80 802 —\288 256)°
Hence,
, _ 400 288\ (50)\
0'Q,0=(50 75) (288 256) (75> =4,600,000
and

V0200 =$2144.76.

The 1% 10-day VaR is therefore 2.32635 x $2144.76 = $4989.

IV.1.7 DECOMPOSITION OF VALUE AT RISK

This section explains how to aggregate VaR over different activities and disaggregate it into
components corresponding to different types of risk factors. The level of discussion is very
general and we do not provide any examples. However, numerous numerical and empiri-
cal examples are given in later chapters as we investigate each of the three VaR models in
greater depth.

The ability to aggregate and disaggregate VaR is an essential management tool. The aggre-
gation of VaR allows total risk to be assigned to different activities. Indeed, this is the
fundamental tool for the risk budgeting process, which is the allocation of economic capital to
activities, the allocation of (VaR-based) limits for traders, and the estimation of the size of the
regulatory capital requirement for market risk. Or they may call for further supervision of high
risk activities. The disaggregation of VaR helps a risk analyst to understand the main sources
of risk in a portfolio. Good risk managers use VaR decomposition to be better informed about
the risks that need to be hedged, about the limits that traders should be set, and about the risks
of potential trades or investments.
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IV.1.7.1 Systematic and Specific VaR

The total risk of a portfolio may be decomposed into systematic risk, i.e. the risk that is cap-
tured by mapping the portfolio to risk factors, and specific risk, i.e. the risk that is not captured
by the portfolio mapping. Some numerical and empirical illustrations of this type of VaR
disaggregation are provided in Sections 1V.2.5.2-1V.2.5.4.

For an example of specific risk, consider portfolios of commodity futures which use spot
prices as risk factors. Here a specific risk arises due to fluctuations in carry costs, if these are
not captured by the portfolio mapping. Another example is when a factor model is used to map
an equity portfolio to its risk factors. Few factor models can provide perfect descriptions of
portfolio returns. There will be a model residual that may have high volatility, especially when
portfolios are not well diversified. In large diversified portfolios the specific returns on each
stock that are left to the model’s residuals tend to cancel each other out if the factor model
is well specified. But if inappropriate (or too few) risk factors are used in the factor model,
the specific risk of the portfolio can be large. In that case we can measure the specific risk by
saving the factor model residuals and applying the VaR model directly to these.

The total VaR includes both the systematic and the specific VaR components. To calculate
this directly we forget about the risk factor mapping and measure the VaR at the portfolio
level, i.e. using a univariate series of portfolio returns or P&L. In the simple normal linear
model this could be based on an assumed (or estimated) value for portfolio volatility; in the
historical VaR model we build an empirical distribution using a time series for the portfolio
returns or P&L; and in the Monte Carlo VaR model we simulate this distribution using a
parametric model for the portfolio’s P&L.

An alternative to the direct calculation of the total VaR is to assume the specific and sys-
tematic risks are approximately uncorrelated. Of course, this would only be the case when
the factor model is capturing most of the variation in the portfolio. Then, in the normal linear
model, the total VaR will be the square root of the sum of the systematic VaR squared and
the specific VaR squared.® Just adding up the systematic and specific risks is not a good way
to estimate the total risk, because this assumes the systematic and specific risks are perfectly
correlated! Thus, the systematic risk should dominate the total risk, but this happens only if
it is much larger than the specific risk of the portfolio. The regulatory requirements for spe-
cific risk are that a specific risk ‘add-on’ must be applied to the systematic risk to obtain the
total risk, unless the risk model allows one to incorporate the specific risk into the total VaR
estimate.*

IV.1.7.2 Stand-alone VaR

We may also decompose the systematic risk of a portfolio into ‘stand-alone’ components that
correspond to fundamental risk factors. The aim is to disaggregate VaR into the risk associ-
ated with particular asset classes: equity VaR, interest rate VaR, forex VaR and commodity
VaR.* This allows the forex and interest rate risks of all types of securities in international
portfolios to be individually assessed, and then combined and managed by separate desks. The
disaggregation of VaR into stand-alone components is important even for domestic portfolios.

40 However, no such simple rules apply to the VaR models that are based on simulation.
41 See Section 1V.8.2.4 for further details.
42 Gold is usually included in forex VaR rather than commodity VaR.
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For instance, the systematic risk of commaodity futures portfolios would be based on move-
ments in spot commaodity prices, if we used these as the risk factors, but under such a mapping
portfolios also have interest rate and net carry cost VaR components.

The decomposition of systematic VaR into stand-alone components can be applied whatever
the assumptions made about the evolution of risk factors, and for any type of portfolio. Stand-
alone VaR is calculated by setting all the sensitivities to other risk factors to zero. The precise
computation depends on the VaR model used and further details are given throughout the
remaining chapters.*

Stand-alone VaR measures the risk of an asset class in isolation. It is stand-alone capital
that should be used to compare the performance of different trading activities. Assuming the
trading desks are managed separately, any diversification benefits should be excluded when
assessing their risks. No single desk should be rewarded or penalized for diversification in the
overall businesses. The correlation between different risk factors, e.g. the correlation between
equity returns and changes in interest rates, is taken into account only when we aggregate
stand-alone VaR estimates.

Stand-alone components of VaR do not ‘add up’, unless we assume that portfolios are linear
and everything is perfectly correlated. In the normal linear VaR model the total risk factor VaR
will be equal to the sum of the stand-alone component VaRs if and only if all the risk factors
are perfectly correlated. Otherwise, the total VaR will be less than the sum of the stand-alone
component VaRs, a property that is known as sub-additivity.* This is because the VaR is
determined by the volatility of portfolio returns in the linear model, and variance (i.e. the
square of the volatility) obeys nice mathematical rules.

More generally, we use some type of simulation to resolve the risk model. Then VaR is
measured as a quantile and quantiles need not be sub-additive, as we shall demonstrate below.
But if the sum of the stand-alone component VaRs does exceed the total VaR, then stand-
alone capital is not appropriate for risk budgeting. Individual portfolios could be within their
risk limits yet the business overall could be in breach of limits. The reason why many large
economic capital driven organizations (mainly large banks and corporations) prefer to use con-
ditional VaR (expected tail loss) instead of VaR for risk budgeting purposes is that conditional
VaR is sub-additive, whatever the resolution method in the risk model.

IV.1.7.3 Marginal and Incremental VaR

An alternative way to disaggregate VaR is to decompose it into marginal VaR components.
Marginal VaR assigns a proportion of the total risk to each component, and hence provides
the risk manager with a description of the relative risk contributions from different factors
to the systematic risk of a diversified portfolio. Unlike stand-alone VaR, marginal VaR is
additive, by virtue of its definition as a proportion. In other words, the sum of the marginal
VaR components is the systematic VaR. For this reason, marginal VaR can be used to allocate
real capital which, being money, must add up.

43 For specific examples of VaR decomposition in the parametric linear framework see Examples IV.2.5 and 1V.2.6 for interest rate
sensitive portfolios, Examples 1V.2.14-1V.2.17 for equity portfolios and case study 1V.2.7 for commodity portfolios. Historical VaR
decomposition is also covered in a series of case studies: in Section 1V.3.5.3 for equity and forex VaR, Section 1V.3.5.4 for interest
rate and forex VaR, and 1V.3.5.5 for commodity VaR. We also derive the marginal VaR estimates in these examples and case studies.
44 A formal definition of sub-additivity is given later in the chapter.
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As its name suggests, marginal VaR is the sensitivity of VaR to the risk factor model
parameters, i.e. the sensitivity of VaR to the risk factor sensitivities 6 = (64, ..., 6,)".*> Note
that 6 can usually be measured in either percentage or value terms, and this determines whether
VaR itself is measured in percentage or value terms.

We now derive an expression for the marginal VaR, by writing VaR as a function of these
parameters, and using some elementary calculus.*® That is, we assume that

VaR = f(6)

for some unspecified but differentiable function f. The gradient vector of first partial
derivatives is

9(0) = (f16).....£.(0)) . (IV.1.29)
where

f,—(O):a);Lee fori=1,...,n.

i

Hence, a first order Taylor approximation to VaR is

fO)~0g(0) =) 6,£.(6). (IV.1.30)

i=1

Each term 6,£;(8) in the sum is called the ith marginal component VaR, or just the ith marginal
VaR for short.

When the portfolio is linear and the VaR is estimated from the normal linear VaR model then
the approximation in (IV.1.30) is exact. In this case the sum of the marginal VaRs is always
equal to the total risk factor VaR. But for other portfolios, and also when VaR is estimated
using simulation, the sum of the marginal VaRs is only approximately equal to the total risk
factor VaR.

The gradient vector (IV.1.29) can also be used to approximate the VaR impact of a small
trade. For instance, it can be used to assess the impact of a partial hedge on a trader’s VaR
limit. We use a first order Taylor approximation to the change in VaR for a small change in 6.
Suppose 6 changes from 6, to 6,. Then the associated change in VaR is

f(0:) — f(80) = (61 — 65)'g(6o). (1IV.1.31)

This change in VaR is called the incremental VaR.

IV.18 RISK METRICS ASSOCIATED WITH VALUE AT RISK

Active portfolio managers are usually required to benchmark their risk as well as their returns.
During the last decade this task caused considerable confusion. Even the phrase ‘the risk of
returns relative to the benchmark’ is ambiguous, as discussed in Section 11.1.6. This section

5 For portfolios that have not been mapped to risk factors, 8 can represent the portfolio weights (for VaR in percentage terms) or
holdings (for VaR in nominal terms).
46 Functions of several variables and their derivatives are covered in Section 1.1.5 and Taylor expansion is introduced in Section 1.1.6.
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begins by introducing benchmark VaR, a metric that is suitable for measuring risk relative to
a benchmark.

Unless VaR is measured using a simple model, such as the normal linear model, it is not
sub-additive. That is, the sum of the stand-alone component VaRs may be greater than the total
VaR. In this case the whole concept of risk budgeting flies out of the window. Traders could
keep within risk limits for each portfolio but the total limit for the desk could be exceeded.
Desk managers could adhere to strict limits, but the total risk budget for the organization as a
whole could still be exceeded. Hence, for risk budgeting purposes most large economic capital
driven organizations use a risk metric that is associated with VaR, and which is sub-additive.
This is a conditional VaR metric that we call expected tail loss or, if measured relative to a
benchmark, expected shortfall. Conditional VaR satisfies all the properties for being a coherent
risk metric, in a sense that will presently be made precise.

1V.1.8.1 Benchmark VaR

When returns are measured relative to a benchmark we consider the active return, which
we assume is the difference between the portfolio return and the benchmark return.*” Then,
expressing VaR in percentage terms, the benchmark VaR is the o quantile of the h-day active
return distribution, discounted to today.

EXAMPLE 1V.1.9: BENCHMARK VAR WITH NORMALLY DISTRIBUTED RETURNS

What is the 1% benchmark VaR over a 1-year horizon for $10 million invested in a fund with
an expected active return equal to the risk free interest rate and a tracking error of 3%?74

SoLUTION Since the expected active return is equal to the risk free rate, the discounted
active return has expectation zero. The tracking error is the standard deviation of the active
return. Hence, we apply the normal linear VaR formula (1V.1.15) with

h=1year, o=0.01, 0er=3% and e =0.

The standard normal critical value is ®~1(0.99) = 2.3264, hence the 1% 1-year benchmark
VaR is

VaR1year 0,01 = 2.3264 x 0.03 =6.98%.

Multiplying this by the portfolio value of $10 million gives the 1% benchmark VaR of
$697,904. Thus we are 99% confident that losses relative to the benchmark will not exceed
$697,904 when holding this portfolio over the next year.

Compared with tracking error, benchmark VaR has two main advantages. Firstly, it measures
the risk of underperforming the benchmark and not the ‘risk” of outperforming it. Secondly,
the expected active return does affect the benchmark VaR, whereas tracking error says nothing
about the expected active return on the fund.*

47 See Section 11.1.6.2 for the formal mathematical definition of active return.

8 The tracking error is the volatility of the active return.

49 For instance, the fund could be underperforming the benchmark by 5% every year and still have a zero tracking error! See
Section 11.1.6 for an example.
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The expected active return has a linear effect on the benchmark VaR, and we demonstrate
this by reconsidering the previous example, this time allowing the expected active return to
be different from zero. Figure 1V.1.3 shows that, keeping the tracking error constant at 3%,
the annual benchmark VaR decreases linearly as we increase the expected active return on the
fund, shown on the horizontal axis. As we increase this from —5% up to 5%, the corresponding
1% 1-year benchmark VaR decreases from almost $1.2 million to only $200,000.%°
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Figure 1V.1.3 Effect of expected active return on benchmark VaR

In short, when a portfolio is expected to outperform a benchmark then the risk of the portfolio
reduces if it is measured by benchmark VaR, but not if it is measured by the tracking error.
Similarly, when a portfolio is expected to underperform a benchmark then the risk of the
portfolio as measured by benchmark VaR increases. This is not a feature of the tracking error,
because that metric only measures the risk relative to the expected active return and is not
affected by the level of the expected active return.

IV.1.8.2 Conditional VaR: Expected Tail Loss and Expected Shortfall

VaR defines a level of loss that one is reasonably sure will not be exceeded. But VaR tells
us nothing about the extent of the losses that could be incurred in the event that the VaR is
exceeded. However, we obtain information about the average level of loss, given that the VaR
is exceeded, from the conditional VaR.

There are two conditional VaR measures, depending on whether we are measuring the VaR
relative to a benchmark or not. The 1000% h-day expected tail loss is the conditional VaR
defined as

ETL,.= _E(Xh|Xh < _VaRh,oL) x P, (IvV.1.32)

50 This very noticeable effect is because the VaR is measured over a 1-year horizon. As we have seen in Section 1V.1.5.2, over horizons
of a month or less, the expected excess return has less effect on the VaR.
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where X; denotes the discounted h-day return on the portfolio, VaR, , is the 100a% h-day
VaR expressed as a percentage of the portfolio’s value and P is the current value of the
portfolio.

The 1000% h-day expected shortfall is the conditional benchmark VaR defined as

ES,.. = —E(X,|X, < —BVaR,,) x P, (IV.1.33)

where X, denotes the discounted h-day active return on the portfolio and BVaR,, is the
1000% h-day benchmark VaR expressed as a percentage of the portfolio’s value.

The distinction between VaR, benchmark VaR, ETL and ES can be illustrated by consider-
ing 1000 P&Ls for a portfolio and for its benchmark and looking at (a) the absolute losses on
the portfolio, and (b) the relative losses, measured relative to a benchmark. Both losses are in
present value terms. Then:

the 1% VaR is the 10th largest absolute loss;

the 1% ETL is the average of the 10 largest absolute losses;
the 1% benchmark VaR is the 10th largest relative loss;

the 1% ES is the average of the 10 largest relative losses.

Their difference is further illustrated by the following example, which is based on an empirical
approach to VaR estimation which we shall later describe as historical simulation.

EXAMPLE 1V.1.10: COMPARISON OF DIFFERENT VAR METRICS

The spreadsheet for this example contains a time series of daily values for the Dow Jones
Industrial Average (DJIA) index and for a (hypothetical) portfolio of stocks that closely tracks
the DJIA. The data in the spreadsheet are from 5 January 1998 to 31 December 2001 and at
the end of this period the portfolio value was $1,007,580, which is similar to a $100 per point
position on the DJIA index.

(a) Find the 1% 1-day VaR and the 1% 1-day ETL on the portfolio on 31 December 2001.
(b) Using the DJIA as benchmark, calculate the 1% 1-day benchmark VaR and expected
shortfall for the portfolio on 31 December 2001.

SOLUTION (a) There are exactly 1000 returns in the spreadsheet, so the 1% quantile is the
tenth largest negative return. This is the return of —3.549% on 15 October 1999, as shown on
the left-hand side of Table 1V.1.4.5! The 1% daily VaR is minus this return, multiplied by the
current value of the portfolio and discounted by 1 day. But the risk free interest rate on 31
December 2001 was only approximately 4%, so the 1-day discount factor is almost one and
we have set it to one.*? Hence, we compute the portfolio VaR on 31 December 2001 as®®

VaR; 01 = 3.549% x $1,007,580 = $35,764.

51 Here we have listed the ten largest negative returns in decreasing order of magnitude, including the dates when they occurred, but
the dates are just for interest.

52 The discount factor is about (1 — 0.04/365)~! = 0.9998. Discounting gives a 1% daily VaR = $35,761, as opposed to $35,764
without discounting.

53 The spreadsheet shows that using the quantile function gives a different answer, not surprisingly given our observations about
the Excel quantile function in Section 1.3.2.8. In Excel the assumption is that, while the observations are discrete, the returns are a
continuous random variable.
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This tells us that we are 99% confident of not losing more than $35,764 between 31 December
2001 and 1 January 2002.

The ETL is the average of the ten largest negative returns that are shown in the first columns
of Table IV.1.4, again multiplied by —1 and by the current portfolio value (ignoring the
discounting as before). That is,

ETL, 00, = Average {6.127%, ..., 3.549%]} x $1,007,580 = $45,505.
This tells us that if we do exceed the VaR, which we expect to happen with a probability

of 1%, on average we would lose $45,505 from our position. The conditional VaR is much
greater than the ordinary VaR, as is often the case.*

Table IV.1.4 The tail of the return distribution and of the active
return distribution

Date Return Date Active Return
31-Aug-98 —6.127% 29-Sep-00 —1.564%
17-Sep-01 —6.033% 27-Feb-98 —1.548%
14-Apr-00 —5.690% 02-Aug-99 —1.514%
20-Sep-01 —5.233% 10-Jul-98 —1.508%
12-Oct-00 —4.241% 30-Dec-98 —1.505%
12-Mar-01 —3.891% 11-Sep-98 —1.491%
14-Jan-99 —3.864% 16-Jun-99 —1.485%
14-Mar-01 —3.801% 12-Jan-01 —1.483%
07-Mar-00 —3.727% 06-Apr-01 —1.472%
15-Oct-99 —3.549% 01-May-98 —1.445%

(b) The benchmark VaR and ES are calculated using a similar process to that in (a), but this
time using the active returns relative to the DJIA benchmark rather than the returns on the
portfolio itself. The tenth largest negative active return was —1.445% on 1 May 1998, and this
and the other 9 largest negative active returns are shown on the right-hand side of Table 1V.1.4.
Recalling that the value of the portfolio on 31 December 2001 was $1,007,580, we calculate
the benchmark VaR and the expected shortfall as:

BVaR; g0 = 1.445% x $1,007,580 = $14,557,
and
ES1 001 = Average {1.564%, . ..., 1.445%} x $1,007, 580 = $15,129.
Hence, we are 99% confident of not losing more than $14,557 more than we would with a

$100 per point position on the DJIA, over a 1-day period. And if we do exceed this figure then
the expected loss, relative to the DJIA position, would be $15,129.

54 By definition, the conditional VaR can never be less than the VaR. The difference between the conditional VaR and the corresponding
VaR depends on the heaviness of the lower tail of the return distribution — the heavier this tail, the greater the difference.
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IV.1.8.3 Coherent Risk Metrics

A risk metric is a single number that is used to summarize the uncertainty in a distribution. For
instance, volatility is a risk metric that summarizes the dispersion over the whole range of a
distribution. Other risk metrics, such as the downside risk metrics introduced in Section 1V.1.3,
only summarize the uncertainty over a restricted range for the random variable.

How do we choose an appropriate risk metric? In portfolio management we choose risk
metrics that have an associated risk adjusted performance measure that ranks investments in
accordance with a utility function — and hopefully, a utility function with desirable properties.
But in banking we tend to choose risk metrics that have certain ‘intuitive’ properties. For
instance, we prefer risk metrics that can aggregate risks in an way that accounts for the effects
of diversification.

What other intuitive properties should a ‘good’ risk metric possess? In Section 1.6.5.2 we
introduce a property called weak stochastic dominance. SUPpOSe one investment A dominates
another investment B in the sense that the probability of the return exceeding any fixed value is
never greater with investment B than it is with investment A. Any rational investor should rank
A above B. Yet some basic risk adjusted performance measures such as the Sharpe ratio (see
Sharpe, 1994) do not preserve this property, as have seen in Section 1.6.5.2. We can construct
two investments A and B where the Sharpe ratio of A is less than that of B even though A
weakly stochastically dominates B.

Clearly, requiring a risk metric to preserve stochastic dominance is not a trivial property.
We shall now phrase this property as the first of several ‘axioms’ that should be satisfied by a
‘good’ risk metric. In the following we use the notation g to denote an arbitrary risk metric.*®

Monotonicity

If A weakly stochastically dominates B then A should be judged as no more risky than B
according to our risk metric. We write this property mathematically as

0(A) <o(B) if A has weak stochastic dominance over B. (IV.1.34)

Sub-additivity

Furthermore, as mentioned above, we would like the risk metric to aggregate risks in an intu-
itive way, accounting for the effects of diversification. We should ensure that the risk of a
diversified portfolio is no greater than the corresponding weighted average of the risks of the
constituents. For this we need

0(A+B) =0(A) +o(B). (1V.1.35)

Without sub-additivity there would be no incentive to hold portfolios. For instance, we could
find that the risk of holding two stocks with agent 1, who can then net the risk by taking into
account the correlation between the stock returns, is greater than the risk of holding stock
A with agent 1 and stock B with agent 2, with no netting of the two agents’ positions. As
remarked in the introduction to this section, without sub-additivity the risk metric cannot be
used for risk budgeting.

55 For instance, if o is a variance and A is a return X, then o(A) = V(X).
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Homogeneity

Note that a risk metric is simply a measure of uncertainty in a distribution; it says nothing at
all about the risk attitude of an investor. It is not a risk premium. For this reason some authors
believe that another intuitive axiom is that if we double our bet, then we double our risk. More
generally, for any positive constant k the homogeneity axiom requires

0(kA) =ko(A). (IV.1.36)

This axiom states that risk preference has nothing to do with the risk metric, or at least if users
are endowed with a utility function then they must be risk neutral. Risk aversion or risk loving
behaviour is, rather, inhomogeneity, in that the marginal utility of wealth typically depends on
the level of wealth. Of all the four axioms for a coherent risk metric, it is this axiom that states
that a risk metric is a measure of uncertainty, rather than of an agent’s perception of risk. For
this reason, several authors find the homogeneity axiom rather contentious and prefer to use
an axiom that can link the risk metric with risk attitude.

Risk free condition

Finally, we note that some risk metrics, such as VaR, may be measured in value terms (e.g. in
dollars or euros). Others, such as volatility of returns, are measured on a relative scale. It is
more convenient to represent risks on a value scale because then the capital that is at risk can
be offset by capital held in cash or a risk free asset.

For example, suppose that risk is measured in US dollars and that we have capital of $1
million of which 90% is invested in a risky portfolio A and 10% is held in a risk free asset.
Suppose further that the risk of our $0.9 million capital invested in A is $250,000 according
to our risk metric @. In other words, o(A) = $250,000. So we have capital at risk of $250,000
but risk free capital of $100,000. Then, according to the risk free axiom, the net capital at risk
should be $150,000. The intuition behind this is that we could use the $100,000 of risk free
capital to cover the risk on the risky asset.

More generally, suppose we divide our capital into an investment A and amount y earning
the risk free return. Then the net capital at risk is

QA +y)=0(A)—v. (IV.1.37)

Artzner et al. (1999) introduced the label coherent for any risk metric that satisfies the four
axioms above. They showed that lower partial moment risk metrics are coherent, and that
conditional VaR, i.e. expected shortfall and expected tail loss, are also coherent risk metrics.
But many common risk metrics are not coherent. For instance, any risk metric expressed in
relative terms, like volatility or tracking error, will not satisfy the risk free condition.

VaR is measured in value terms, but it is only coherent under special assumptions about the
distribution of returns. When returns are normally distributed VaR is a coherent risk metric,
because it behaves like the volatility of returns (converted into value terms). But more gener-
ally, VaR is not coherent because quantiles, unlike the variance operator, do not obey simple
rules such as sub-additivity unless the returns have an elliptical distribution. The next example
constructs a portfolio containing only two instruments for which VaR is not sub-additive.
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EXAMPLE IV.1.11: NON-SUB-ADDITIVITY OF VAR

Suppose we write the following two binary options: option A pays $10,000 if the monthly
return on the S&P 500 index is at least 20% and option B pays $10,000 if the monthly return
on gold is at least 20%. Both options are sold for $1000. We assume that the returns on the
S&P 500 and gold are independent and that each has a probability of 0.02532 of returning at
least 20%.% Show that the sum of the 5% VaRs on each separate position is less than the 5%
VaR when the two options are taken together in a portfolio.

SOLUTION First consider each position separately: in each individual position there is only
a 2.532% chance that we pay out $10,000. Put another way, the P&L distribution is exactly

P(P&L =-9000) =2.532% and P(P&L <1000)=1.

This is depicted in Figure 1V.1.4.

We cannot lose more than $9000, so this is the 1% VaR, i.e. P(P&L < —$9000) = 1%. And
indeed, $9000 is also the 2.5% VaR. But what is the 5% VaR, i.e. the amount X such that
P(P&L < —X) =5%? It is important to note that the P&L is truly discrete for this binary
option, it is not just a discrete approximation to a continuous random variable. Either we
make a profit of $1000 or we lose $9000. These are the only alternatives. It makes no sense to
interpolate between these outcomes, as if we could obtain a P&L between them. We know the
distribution function is exactly as shown Figure 1V.1.4, so we can read off the 5% quantile: it
is +$1000. The sum of the two 5% VaRs is thus —$2000.

Now consider a portfolio containing both the options. The most we can lose is $18,000,
if both options are called. By the independence assumption, this will happen with probabil-
ity 0.02532% = 0.000642. We could also lose exactly $9000 if one option is called and the
other is not. The probability of this happening is 2 x 0.02532 x (1 — 0.02532) = 0.049358.

A
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2.532% i
9,000 1,000

Figure 1V.1.4 P&L distribution for one binary option

56 Readers will see from the solution that the probability 0.02532 is chosen so that —$9000, is the 5% quantile of the portfolio P&L.
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Figure IV.1.5 P&L distribution for a portfolio of two binary options

Hence, the probability that we lose $9000 or more is 4.9358% + 0.0642% = 5%. Hence, as
depicted in Figure 1V.1.5, the 5% VaR of the portfolio is $9000. This is greater than —$2000,
i.e. the sum of the VaR on the two individual positions taken separately. Hence, the VaR is not
sub-additive.

IV.1.9 INTRODUCTION TO VALUE-AT-RISK MODELS

The material presented in this section, which provides essential background reading for the
remainder of the book, introduces the three basic types of VaR models:

e the normal linear VaR model, in which it is assumed that the distribution of risk factor
returns is multivariate normal and the portfolio is required to be linear;

e the historical simulation model, which uses a large quantity of historical data to estimate
VaR but makes minimal assumptions about the risk factor return distribution; and

e the Monte Carlo VVaR model, which in its most basic form makes similar assumptions to
the normal linear VVaR model.

It is easy to estimate VaR once we have the discounted return distribution, but constructing this
distribution can take considerable effort. The only differences between the three VaR models
are due to the manner in which this distribution is constructed. All three approaches may be
developed and generalized, as will be explained in the next three chapters. The Monte Carlo
framework is the most flexible of all, and may be used with a great diversity of risk factor
return distributions. And, like historical simulation, it also applies to option portfolios.

IV.1.9.1 Normal Linear VaR

A note on terminology is appropriate first. The risk factor (or asset) returns covariance matrix
is central to this approach and for this reason some people call this approach the covariance
VaR model. However, | find this terminology slightly ambiguous for two reasons. Firstly, in
its most basic form the Monte Carlo VaR model also uses the risk factor returns covariance
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matrix. Secondly, a parametric linear VaR model need not summarize the risk factor depen-
dency with a single covariance matrix. For instance, we could use several covariance matrices
in the normal or Student ¢ mixture linear VaR model, as we shall see in the next chapter.

In fact, the parametric linear VaR models have been given many different names by many
different authors. Some refer to them as the analytic VaR models, but analytic expressions
for VaR may also be derived for non-linear portfolios. Other authors call normal linear VaR
the delta-normal VaR, but we do not actually need to assume that risk factors are normally
distributed for this approach and the use of the term “delta’ gives the impression that it always
refers to a linearization of the VaR for option portfolios.

The parametric linear VaR model is only applicable to a portfolio whose return or P&L is
a linear function of its risk factor returns or its asset returns. The most basic assumption in
the model is that risk factor returns are normally distributed, and that their joint distribution
is multivariate normal, so the covariance matrix of risk factor returns is all that is required
to capture the dependency between the risk factor returns. Under these assumptions it is pos-
sible to derive an explicit formula for the VaR, and we have already demonstrated this in
Sections 1V.1.5.1, 1V.1.6.2 and 1V.1.6.3.

VaR is usually measured over a short risk horizon, and we have shown in Section 1V.1.5.2
that it is a reasonable approximation to assume that the excess return on the portfolio is zero
over such an horizon. Then the normal linear VaR formula takes a very simple form. As a
percentage of the portfolio value, the 100a% normal linear VaR is simply minus the standard
normal a quantile, multiplied by the standard deviation of the portfolio returns over the risk
horizon. In a linear portfolio, this standard deviation may be represented as the square root of
a quadratic form that is based on the risk factor sensitivity vector and the risk factor covariance
matrix over the risk horizon.*

The next chapter is a very long chapter, completely devoted to discussing the parametric
linear VaR model. We shall see that it is not necessary to assume that risk factors returns
have a multivariate normal distribution in order to derive a formula for the VaR. It is also
possible to derive a formula when risk factor returns have a multivariate Student ¢ distribution,
or when they have a mixture of normal or Student ¢ distributions. However, in the mixture case
the formula gives VaR as an implicit rather than an explicit function, so a numerical method
needs to be applied to solve for the VaR.

Furthermore, it is not necessary to assume that each risk factor return follows an i.i.d. pro-
cess, although this is a standard assumption for scaling VaR over different risk horizons.
It is possible to find a simple scaling rule for linear VaR when the risk factor return are
autocorrelated, provided there is no time-varying volatility.*®

1V.1.9.2 Historical Simulation

The historical VaR model assumes that all possible future variations have been experienced in
the past, and that the historically simulated distribution is identical to the returns distribution
over the forward looking risk horizon. Again, a note on terminology is in order. Some authors
call this model the non-parametric VaR model, but | do not like this nomenclature because
parametric distributions can be a useful addition to this framework when estimating VaR at

57 See Section 1.2.4 for the derivation of this result.
58 \We have already stated this rule, in the context of the normal linear model, in Section 1V.1.5.3. Further details are given in
Section 1V.2.2.2.
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very high quantiles. Having said this, the term “historical VaR’ is a little unfortunate, since
both of the other models can use historical data, if required. For instance, we may use a risk
factor return covariance matrix forecast that is based on historical data for the risk factors.

Historical scenarios on contemporaneous movements in risk factors are used to simulate
many possible portfolio values in h days’ time. For this, we need to apply the risk factor map-
ping (e.g. the factor model for equities, the cash-flow map for interest rate sensitive portfolios,
or the Taylor expansion for options) to each one of these contemporaneous simulated risk fac-
tor returns. We assume the risk factor sensitivities are held constant at their current levels, as
discussed in Section 1V.1.5.2. Then the risk factor mapping changes each set of correlated risk
factor returns into one possible return for the portfolio over the risk horizon of the VaR model.
This h-day return is discounted to today, if necessary, using the h-day discount rate.>®

Taking all the simulated discounted portfolio returns together, we can build an empirical
distribution of the h-day portfolio return or P&L. Then the 100a% h-day VaR is minus the
a quantile of the historically simulated distribution. If the distribution is of portfolio returns
then VaR is expressed as a percentage of the current portfolio value, and if the distribution is
of portfolio P&L VaR is expressed in value terms.

One such simulated P&L density is depicted in Figure 1V.1.6. The lower 1% quantile of
the distribution is —0.04794 million dollars. This is calculated in the spreadsheet using linear
interpolation. Hence the 1% VaR based on this set of simulations is $47,940.
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Figure 1V.1.6 Simulated P&L density showing 1% VaR

The main limitations of historical VaR stem from the constraints imposed by the sample
size. The number of data points used to construct the historical distribution is equal to the
number of observations on each risk factor return in the simulation. This number should be
as large as possible, otherwise there would be very few points in the lower tail of the distri-
bution and the VaR, especially at high confidence levels, would be imprecise. The historical
data should be sampled at the daily frequency and should span many years into the past.
This is because we need very many data points to estimate the quantiles of an empirical

59 But this is not necessary if the discounting is already accounted for in the risk factor sensitivity, as it is in PVO1.
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distribution, especially those quantiles in the extreme lower tail (which are required for
VaR estimates at high confidence levels). Gathering such data can be a difficult and time-
consuming task. We should try not to use overlapping h-day returns in the model, for reasons
that will be clarified in Section 1V.3.2.7. So even if we have many, many years of daily
data on each risk factor we can initially measure VaR at the daily risk horizon only. If we
require VaR over a longer horizon we need to scale up the daily VaR estimate somehow.
The problem is that scaling historical VaR estimates is very tricky. This is fully discussed in
Section 1V.3.2.

On the other hand, one great advantage of historical VaR is that it makes few distributional
assumptions. No assumption is made about the parametric form of the risk factor return dis-
tribution, least of all multivariate normality. For instance, we do not need to assume that the
risk factor returns covariance matrix can capture all the complex dependencies between risk
factors. The only distributional assumption is that the multivariate distribution of the risk
factor returns over the risk horizon will be identical to the distribution in the past. Also, if we
scale the historical VaR to a longer risk horizon, we need to assume the risk factor returns
are i.i.d. They need not be normally distributed; as long as they have a “stable distribution’®
we can derive a scaling rule for historical VaR.

In summary, a major advantage of historical VaR is that it bases risk factor dependencies on
experienced risk factor returns and comovements between these, rather than on a parametric
model for their distribution. However, the model also suffers from a major drawback. Due to
sample size constraints historical VaR needs to be assessed initially at the daily horizon, and
then scaled up to longer horizons. The scaling of historical VaR from a daily to a longer risk
horizon requires a detailed investigation of the nature of the empirical return distribution. Usu-
ally it is not appropriate to apply the square-root-of-time scaling rule, as we do for normal i.i.d.
returns. Moreover, historical VaR has only limited applications to option portfolios because
any type of scaling will distort their gamma effects, as we shall demonstrate in Section 1V.5.4.

1V.1.9.3 Monte Carlo Simulation

In its most basic form the Monte Carlo VaR model uses the same assumptions as the normal
linear VaR model, i.e. that the risk factor returns are i.i.d. with a multivariate normal dis-
tribution. In particular, it assumes that the covariance matrix is able to capture all possible
dependency between the risk factor returns. However, the Monte Carlo VaR model is
extremely flexible and many different assumptions about the multivariate distribution of risk
factor returns can be accommodated. For instance, we could use a copula to model the
dependence and specify any type of marginal risk factor return distributions that we like.®

In the i.i.d. multivariate normal Monte Carlo VaR model we simulate independent standard
normal vectors and these are transformed to correlated multivariate normal vectors using the
Cholesky decomposition of the risk factor returns covariance matrix.®? Then the portfolio
mapping is applied to each vector of simulated risk factor changes to obtain a simulated
portfolio value at the end of the risk horizon, one for each simulated vector of correlated risk

60 See Section 1.3.3.11 for further details about stable distributions.

61 Copulas are dependence models that allow one to build any number of multivariate distributions from a given set of marginal
distributions. Chapter 11.6 is completely devoted to introducing copulas, and provides many copulas, and copula simulations, in Excel.
62 The Cholesky matrix is introduced in Section 1.2.5 and its role in generating correlated simulations is described, with Excel
examples, in Section 1.5.7.
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factor returns. To reduce the sampling error we generate a very large number of simulations
and apply techniques to reduce the error variance.%

For example, if we use 100,000 simulations then we have 100,000 simulated portfolio
values at the risk horizon in h days’ time, and hence also 100,000 simulated returns on the port-
folio. These are expressed in present value terms and then the 100a% h-day VaR is obtained
as minus the lower a quantile of the discounted h-day portfolio return distribution.

Both the multivariate normality and the i.i.d. assumptions can be generalized, and we shall
discuss how this is done in Sections 1V.4.3 and 1V.4.4. Another essential difference between
the Monte Carlo VaR and parametric linear VaR models is that the Monte Carlo approach can
be applied to non-linear portfolios, and to option portfolios in particular.

Clearly the normal linear VaR and the normal Monte Carlo VaR models are very similar
because they make identical assumptions about risk factor distributions. The only difference
between the two models is that the evolution of the risk factors is simulated in the Monte
Carlo VaR model whereas it is obtained analytically in the normal linear VaR model. Thus
the normal linear VaR is precise, albeit based on an assumption that is unlikely to hold, whilst
the normal Monte Carlo VaR estimate is subject to simulation error. Thus, the normal Monte
Carlo VaR estimate should be similar to the normal linear VaR estimate. If it is different,
that can only be because an insufficient number of simulations were used. In fact, it is a
waste of time to apply normal Monte Carlo VaR to a linear portfolio, because this merely
introduces sampling errors that are not present in the normal linear VaR model. Nevertheless,
there is still a good reason for applying Monte Carlo VaR to a linear portfolio, and this is that
the Monte Carlo VaR can be based on virtually any multivariate distribution for risk factor
returns, whereas closed-form solutions for parametric linear VaR only exist for a few select
distributions.

IV.1.9.4 Case Study: VaR of the S&P 500 Index

The aim of this subsection is to illustrate the three standard VVaR models, in their most basic
form, by applying them to measure the VaR of a very simple portfolio with a position of $1000
per point on the S&P 500 index. We use the case study to illustrate the different ways in which
the three models build the portfolio return distribution, and to give the reader some insight into
the reasons why different VaR models give different results. A more thorough discussion of
this topic is left until Chapter V.6, after we have reviewed all three models in detail.

Daily historical data on the S&P 500 index from 3 January 2000 until 8 January 2008 are
downloaded from Yahoo! Finance.® Using the same data set for each, we apply the three mod-
els to estimate the VaR of a position of $1000 per point on the index on 8 January 2008. Since
the index closed at 1390.19 on that day, the nominal value of our position is P = $1,390,190.

Normal Linear VaR

Here we assume a normal distribution for the portfolio’s daily returns, and we use the log
approximation since this is usually very accurate over a 1-day horizon. From the historical
price series in the spreadsheet we compute the daily log returns over the whole sample,

63 See Section 1V.4.2.3 for an overview of these techniques.
64 The symbol for the S&P 500 index is *GSPC.
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and hence estimate the standard deviation o of these returns as 6 = 1.116%.% Under the
assumption that the log returns are i.i.d. we can use the square-root-of-time rule, setting the
h-day standard deviation &, = v/hé. For example, 61, = /10 x 1.116% = 3.53%.

For simplicity, and because it will not detract from the illustration, we assume that the
expected return on our position and the risk free rate are both zero, so that no discount-
ing or drift adjustment needs to be made to the returns before calculating the VaR. Hence,
we set

Normal Linear VaR, , = ® %1 — a)6,P. (IV.1.38)

For example,

Normal Linear VaR;y; = 2.32635 x 0.0353 x $1,390,190 = $114,168.

Historical VaR

The historical VaR estimate uses exactly the same historical daily log returns as above, but now
no parametric form is assumed for the log returns distribution. The o quantile is calculated on
the actual daily (log) returns that were realized over the sample.% This is then multiplied by
—1 and by the nominal value of the portfolio, to convert the quantile into a 1-day VaR in
nominal terms. For comparison with the other models we also apply a square-root scaling law
to the historical 1-day VaR to obtain the h-day historical VaR, even though there may be no
theoretical justification for the use of this rule. Thus we multiply the 1-day historical VaR by
V/h to obtain the h-day historical VaR.

For example, the 1% quantile of the empirical return distribution in our case study is
—2.959%, so the 1% 10-day historical VaR estimate is

Historical VaRg0; =+/10 x 0.02959 x $1,390,190 = $130,666.

Monte Carlo VaR

For the Monte Carlo VaR we take the same standard deviation estimate ¢, as that used in
the normal linear VaR model. Using the Excel command =NORMSINV(RAND())*6;, as
explained in Section 1.5.7, we simulate a very large number of hypothetical h-day returns.
Only 5000 are set into the spreadsheet, but readers may increase the number of simulations by
filling down column D. Then we apply the Excel PERCENTILE function to find the o quan-
tile of their distribution. This is multiplied by the nominal value of the portfolio to convert the
quantile into a 1000% h-day VaR in nominal terms.

The Monte Carlo simulations are automatically repeated each time you change any data
in the spreadsheet, unless you turn the automatic calculation option to manual. To repeat the
simulations at any time just press F9. We use no variance reduction technique here, so unless
a very large number of simulations are used the result can change considerably each time.
Table 1V.1.5 summarizes results for o = 1% and 5% and for h =1 and 10. Of course, in
the spreadsheet readers will see a different value for Monte Carlo VaR than that shown in the

85 The caret “** above the symbol denotes the sample estimate.
86 Using the Excel PERCENTILE function for expediency, if not accuracy! See Section 1.3.2.8 for a critique of the Excel percentile
function.
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right-hand column of Table 1V.1.5. Remember, the linear VaR gives the exact figure and the
Monte Carlo VaR is subject to simulation errors, but the variance of this error decreases as we
increase the number of simulations.®

Table 1V.1.5 Comparison of estimates from different VaR models

Normal linear  Historical Normal Monte Carlo
5% 1-day VaR $25,527 $25,579 $25,125
1% 1-day VaR $36,103 $41,130 $36,160
5% 10-day VaR $80,723 $80,887 $80,246
1% 10-day VaR $114,168 $130,066 $113,248

The difference between the normal linear and the historical VaR estimates is more apparent
at the 1% significance level. At the 5% level the two estimates are similar, but the historical
return distribution is leptokurtic. That is, it has heavier tails than the normal distribution, so the
VaR at extreme quantiles is greater when estimated using the historical simulation approach.
The square-root scaling rule may not appropriate for historical VaR, but even without this
potential error the 1% 1-day VaR estimates are already very different. The estimated VaR
is about 14% greater when based on historical simulation. Relative to the portfolio value of
$1,390,190, we have a 1% 1-day VaR of:

e 36,103/1,390,190 = 2.6% according to the normal linear VaR model, but
e 41,130/1,390,190 = 2.96% according to the historical VaR model.

The reason is that the normal linear VaR model assumes the returns have a normal distribution,
whereas the sample excess kurtosis of the daily log returns is 2.538. Such a high positive
excess kurtosis indicates that the empirical S&P 500 return distribution has heavy tails, so
the assumption of normality that is made in the linear and Monte Carlo VVaR models is not
validated by the data.

IV.1.10 SUMMARY AND CONCLUSIONS

We opened this chapter by discussing the risk metrics that are commonly used by fund man-
agers, banks and corporations. In the fund management industry risk is commonly measured
in the context of a returns model, whereas in banking and corporate treasury the risk model is
usually separate from the returns model. Hence, quite different risk metrics were traditionally
used in these industries.

A market risk metric is a single number which measures the uncertainty in a portfolio’s
P&L, or in its return. Its fundamental purpose is to summarize the portfolio’s potential for
deviations from a target or expected return. A typical risk metric for passive fund management
is tracking error, which is the volatility of the active return. Unfortunately tracking error has
also been adopted by many active portfolio managers, even though it is not an appropriate
risk metric for actively managed funds. One of the reasons for this is that tracking error is

57 Further discussion of this point is given in Section 1V.4.2.3.
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not a downside risk metric. Many downside risk metrics have been developed for active fund
managers and several of these have better properties than tracking error. Increasingly, portfolio
managers are adopting VaR-based downside risk metrics, such as benchmark VaR and expected
shortfall, because these metrics tell clients about the probability of losing money. Tracking
error is more difficult for clients to understand, particularly when it is linked to the (possibly
erroneous) assumption that the portfolio returns are normally distributed. VVaR does not have
to assume that returns are normally distributed.

VaR is a quantile risk metric. But when returns are normal every quantile is just a multiple of
the standard deviation, so in this special case VaR obeys the same rules as a standard deviation.
Otherwise, VaR does not obey nice rules and it may not even be sub-additive.

VaR and its associated risk metrics have become the universal risk metrics in banking and
corporate treasury. The reason why large companies measure risks using a VaR model is that
these firms often have a management structure that is based on economic capital allocation.
Most major banks use VaR to measure both economic and regulatory capital. Economic capital
affects the bank’s credit rating, and is a primary tool for management. Regulatory capital is
determined by either standardized rules or an internal VVaR model. We shall return to this topic
in the final chapter of this book.

There are many reasons why banks like to use VaR, which are listed in the introduction and
explained in this chapter. But VaR has some undesirable properties. It is not a coherent risk
metric, unless we make some simplifying assumptions about the behaviour of the risk factors
and the portfolio is a linear portfolio. However, the conditional VaR metric is always coherent,
so many banks use a conditional VaR such as expected tail loss in their internal economic
capital calculations.

In the bottom-up risk assessment paradigm that is prevalent today, risks are assessed first at
the individual position level, and then positions are progressively aggregated into larger and
larger portfolios. A portfolio can contain anything from a single instrument to all the positions
in the entire firm. At each stage of aggregation VaR is estimated and decomposed into the VaR
due to different classes of risk factors. This decomposition allows the VaR due to risk factors
in different asset classes to be identified, monitored and hedged efficiently. It also allows
capital to be allocated in accordance with a universal risk metric, used for all the activities in
the firm.

The disaggregation of VaR allows risk to be allocated to different activities and risk capital
to be allocated accordingly. VaR can be decomposed into systematic and specific components,
and systematic VaR can be further decomposed into stand-alone or marginal VaR components
belonging to different types of risk factors. Thus, taking all the positions in the entire bank,
we estimate stand-alone and/or marginal VaR for equity, interest rates, credit spreads, com-
modity groups, and forex. Stand-alone VaR is used in performance measures that determine
the internal allocation of economic capital. It measures the risk of an activity (e.g. proprietary
trading, or swaps) in isolation. It does not reduce the risk of any component by accounting
for any diversification benefits (e.g. between equities and interest rates). Marginal VaR can
be used to allocate real capital. It tells us the proportion of total risk stemming from different
activities and it accounts for diversification benefits between the components. Marginal VaR
can be extended to the concept of incremental VaR, i.e. the impact on the portfolio’s VaR of
adding a small new position to the portfolio.

Aggregation of VaR provides information about the total risk faced by a firm and the
adequacy of its total capital to cover risky positions given and adverse market move. Marginal
VaR is constructed in such as way that the sum of marginal VaRs is the total risk factor VaR.
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But stand-alone VaR estimates do not sum to the total risk factor VaR. Since stand-alone VaR
measures risk in isolation, the aggregation of stand-alone component VaRs takes account of
diversification.

We have defined several distinct steps to take when building a VaR model, and provided a
preliminary discussion on the choice available at each step. The model building process may
be summarized as follows:

1.

2.

Define the portfolio and identify its risk factors. Portfolios may be characterized by their
asset holdings, and long-only portfolios may be characterized by the portfolio weights.

Set the basic parameters for the model. The basic parameters of a VaR model are the
confidence level and the risk horizon, and a VaR estimate increases with both these
parameters. The choice of these parameters depends on the end use of the model. For
instance, trading limits may be set at 95% confidence and a horizon of 1 day, whereas
economic capital estimates may be based on 99.9% confidence with a risk horizon of
1 year.

Map the portfolio to its risk factors. This entails building a model for the portfolio return,
or P&L, as a function of the absolute or percentage returns to its risk factors. The risk
factor mapping process greatly facilities (a) the subsequent VaR computations, which
indeed in many cases would be impossible without a risk factor mapping; and (b) the
efficient firm-wide hedging of risks, as the fundamental risk factors can be isolated and
the exposures netted centrally.

Model the evolution of the risk factors over the risk horizon. It is here that the three
different VaR models adopt different approaches. Both the parametric linear VaR and
Monte Carlo VaR models assume we know a functional form for the multivariate
stochastic process generating the time series of risk factor returns. For instance, they
could assume that an independent, normally distributed process generates each risk
factor returns series. In that case the returns on each risk factor have no autocorrela-
tion or time-varying volatility, but the risk factor returns at any particular point in time
are assumed to be correlated with each other. The historical VaR model uses an empirical
risk factor return distribution, without assuming it takes any specific parametric form. It
is only based on the risk factor variations and dependencies that have been experienced
in a historical sample. Importantly, it does not rely on a covariance matrix to capture all
the risk factor variations and dependencies.

Revalue the portfolio for each realization of the risk factors. Here we typically assume
the risk factor sensitivities are held constant over a risk horizon of h days. But these
sensitivities depend on the risk factor values and the risk factor values change over the
risk horizon. Hence, there is an implicit assumption that the portfolio is rebalanced to
maintain constant risk factor sensitivities.

Build a distribution for the portfolio return or P&rL. Which of these distributions is used
will depend on the risk factor mapping. In some cases (e.g. interest rates or long-short
portfolios) it is more natural to generate the P&L distribution, in others is it more natural
to use the return distribution. The h-day portfolio return or P&L must also be expressed
in present value terms. If the expected return on the portfolio is very different from
the discount rate, then the return distribution should be modified to account for this.
When VaR is measured over a long horizon such as a year, this adjustment may result
in a significant reduction in VaR. This is particularly important when VaR is used to
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assess the absolute risk of funds, which typically expect to return more than the risk
free rate and have risks that are measured over long horizons. However, when the risk
of funds is benchmarked, in which case the VaR is based on the active returns rather
than the ordinary returns on the fund, there may be little justification to suppose that
the expected active return will be any different from zero whatever the fund manager
tells you.

7. Calculate the VaR and ETL. The 1000% h-day VaR is (minus) the o quantile of the
discounted h-day distribution. If we build a P&L distribution, the VaR and ETL will be
measured in value terms and if we build a return distribution they will be expressed as
a percentage of the portfolio value. It is possible to obtain the quantiles using analytical
methods in parametric linear VaR models. Otherwise, the returns or P&L distribution
must be simulated, and the quantile is calculated using interpolation on the simulated
distribution. Often we assume that an i.i.d. process generates each risk factor return;
then we can measure the VaR initially over a 1-day horizon, and scale this up to a VaR
estimate for a longer risk horizon. Under some conditions we can use a square-root
scaling rule for VaR, for instance when the discounted portfolio returns are i.i.d. and
normally distributed with mean zero.

For a linear portfolio with i.i.d. normally distributed returns, the normal linear VaR should
be identical to the normal Monte Carlo VaR. But in the ensuing chapters we shall see that both
the parametric linear VaR model and the Monte Carlo VaR model may be generalized to make
other distributional assumptions. The Monte Carlo VaR model is particularly flexible in that
the returns may be assumed to have any parametric distribution that we care to specify.

An obvious problem with the historical VaR model is the severe constraints that are imposed
by sample size limitations. In their basic form the other two models only require a covariance
matrix, and this can be based on only very recent historical data — or indeed, it can be set
according to the personal views of the analyst, using no historical data at all. But in historical
VaR one has to re-create an artificial history for the portfolio, holding its current weights,
holdings or risk factor sensitivities constant over a very long historical period. Even when this
is possible, it is not necessarily desirable because the market conditions in the recent past and
the immediate future may have been very different from those experienced many years ago. As
its name suggests, the historical model assumes that the distribution of the portfolio returns
or P&L over the risk horizon is the same as the historical distribution. This makes it more
difficult to perform scenario analysis in the historical model, although we shall demonstrate
how to do this in Section 1V.7.5.1.

A further distinguishing feature between the models is that a normal linear VaR esti-
mate can only be applied when the portfolio return is a linear function of its risk factor
returns. This restriction does not apply to the Monte Carlo VaR and historical VaR models,
although the application of historical VaR to option portfolios is fairly limited, as explained in
Section 1V.5.4.

To summarize the main advantage of each approach:

e The normal linear VaR model is analytically tractable.
e Historical VaR makes no (possibly unrealistic) assumption about the parametric form of
the distribution of the risk factors.
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e The Monte Carlo VaR model is very flexible, and it can be applied to any type of position,
including non-linear, path-dependent portfolios.

To summarize the main limitations of each approach:

e The normal linear VaR model is restricted to linear portfolios and it can only be gener-
alized to a few simple parametric forms, such as a Student ¢t or a mixture of normal or
Student ¢ distributions.

e Historical VaR assumes that all possible future variation has been experienced in the
past. This imposes very stringent, often unrealistic, requirements on data.

e Monte Carlo VaR is computationally intensive and without sophisticated sampling
methods, simulation errors can be considerable.

The chapter concluded with a case study that highlights the similarities and the differences
between the three VaR models, using a simple position on the S&P 500 index as an illustration.
We used an i.i.d. normal assumption in the linear and Monte Carlo VaR models, so the two
VaR estimates should be identical for every significance level and risk horizon. However, even
with many thousand simulations and a very simple portfolio, the simulation errors in Monte
Carlo VaR were considerable. Also, there was a highly significant excess kurtosis in the S&P
return distribution, and for this reason the normal linear and Monte Carlo VaR estimates were
significantly lower than the historical VaR estimates at the 1% significance level. However, at
the 5% significance level, all three models gave similar results.






V.2
Parametric Linear VaR Models

IV.2.1 INTRODUCTION

The parametric linear model calculates VaR and ETL using analytic formulae that are based
on an assumed parametric distribution for the risk factor returns, when the portfolio value is
a linear function of its underlying risk factors. Specifically, it applies to portfolios of cash,
futures and/or forward positions on commodities, bonds, loans, swaps, equities and foreign
exchange. The most basic assumption, discussed in the previous chapter, is that the returns
on the portfolio are independent and identically distributed with a normal distribution. Now
we extend this assumption so that we can decompose the portfolio VaR into VaR arising from
different groups of risk factors, assuming that the risk factor returns have a multivariate normal
distribution with a constant covariance matrix. We derive analytic formulae for the VaR and
ETL of a linear portfolio under this assumption and also when risk factor returns are assumed
to have a Student t distribution, Or a mixture Of normal or Student ¢ distributions.

In bond portfolios, and indeed in any interest rate sensitive portfolio that is mapped to a
cash flow, the risk factors are the interest rates of different maturities that are used to both
determine and discount the cash flow. When discounting cash flows between banks we use a
term structure of LIBOR rates as risk factors. Additional risk factors may be introduced when
a counterparty has a credit rating below AA. For instance, the yield on a BBB-rated 10-year
bond depends on the appropriate spread over LIBOR, so we need to add the 10-year BBB-
rated credit spread to our risk factors. More generally, term structures of credit spreads of
different ratings may also appear in the market risk factors: when portfolios contain trans-
actions with several counterparties having different credit ratings, one credit spread term
structure is required for each different rating.

There is a non-linear relationship between the value of a bond or swaps portfolio and interest
rates. However, this non-linearity is already captured by the sensitivities to the risk factors,
which are in present value of basis point (PVO01) terms. Hence, we can apply the parametric
linear VaR model by representing the portfolio as a cash flow, because the discount factor that
appears in the PV01 is a non-linear function of the interest rate.

We may also base parametric linear VaR and ETL estimates on an equity factor model,
provided it is linear, which is very often the case. Foreign exchange exposures are based on
a simple linear proportionality, and commodity portfolios can be mapped as cash flows on
term structures of constant maturity forwards or interest rates. Thus, the only portfolios to
which the parametric linear VaR method does not apply are portfolios containing options, or
portfolios containing instruments with option-like pay-offs. That is, whenever the portfolio’s
P&L function is a non-linear function of the risk factors, the model will not apply.

In the parametric linear VaR model, all co-dependencies between the risk factors are
assumed to be represented by correlations. We represent these correlations, together with the
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variance of each risk factor over some future risk horizon h, in an h-day covariance matrix.
It is this covariance matrix — and in mixture linear VaR models there may be more than one
covariance matrix — that really drives the model. To estimate the covariance matrix we employ
a moving average model.* These models assume the risk factors are i.i.d. From this it follows
that the h-day covariance matrix is just h times the 1-day covariance matrix, a result that is
commonly referred to as the square-root-of-time rule.?

In the standard parametric linear VaR model we cannot forecast the covariance matrix using
a GARCH model.® When a return is modelled with a GARCH process it is not i.i.d.; instead it
exhibits volatility clustering. As a result the square-root-of-time rule does not apply. However,
this is not the reason why we cannot use a GARCH process in the parametric linear VaR
model. The problem is that when a return follows a GARCH process we do not know the
exact price distribution h days from now. We know this distribution when the returns are i.i.d.,
because it is the same as the distribution we have estimated over a historical sample. But the
h-day log return in a GARCH model is the sum of h consecutive daily log returns and, due
to the volatility clustering it is the sum of non-i.i.d. variables. Thus far, we only know the
moments Of the h-day log return distribution, albeit for a general GARCH process.*

The outline of this chapter is as follows. In Section 1V.2.2 we introduce the basic concepts
for parametric linear VaR. Starting with VaR estimation at the portfolio level (i.e. we consider
the returns or P&L on a portfolio, without any risk factor mapping), we examine the properties
of the i.i.d. normal linear VaR model and then extend this assumption to the case where returns
are still normally distributed, but possibly autocorrelated. This assumption only affects the
way that we scale VaR estimates over different risk horizons; the formula for 1-day VaR
remains the same. An extension of the normal linear VaR formula for h-day VaR is derived
for the case where daily returns are autocorrelated, and this is illustrated with a numerical
example.

Then we consider the more general case, in which we assume the portfolio has been mapped
to its risk factors using an appropriate mapping methodology.® We provide the mathematical
definitions, in the general context of the normal linear VaR model, of the different components
of the total VaR of a portfolio. The total VaR may be decomposed into systematic (or total risk
factor) VaR and specific (or residual) VaR, where the systematic VaR is the VaR that is captured
by the risk factor mapping. The systematic VaR may be further decomposed into stand-alone
VaR or marginal VaR components, depending on our purpose:

e Stand-alone VaR estimates are useful for estimating the risk of a particular activity in
isolation, without considering any netting or diversification effects that this activity may
have with other activities in the firm. Diversification effects are accounted for when
aggregating stand-alone VaRs to a total risk factor VaR. The ordinary sum of the stand-
alone VaRs is usually greater than the total risk factor VaR, and in the normal linear VaR
model it can never be less that the total risk factor VaR.

L Full details of the estimation of equally and exponentially weighted moving average covariance matrices are given in Chapter 11.3.
2 See Section 11.3.2.1 for further details.

3 For further details on GARCH models see Chapter 11.4.

4 Alexander et al. (2008) have derived analytic formulae for the first eight moments of the aggregated return distribution based on
asymmetric GARCH with a general error distribution. By fitting a parametric form to these moments Alexander et al. (2009) derive a
quasi-analytic VaR model.

5 Portfolio mapping for all types of financial instruments is fully described in Chapter I11.5.
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e Marginal VaR estimates are useful for the allocation of real capital (as opposed to eco-
nomic capital) because the sum of all the marginal VaR estimates is equal to the total
risk factor VaR (and real capital must always add up).

The next five sections provide a large number of numerical and empirical examples, and
two detailed case studies, on the application of the normal linear model to the estimation of
total portfolio VaR. We focus on the decomposition of the systematic VaR into components
corresponding to different types of risk factor. Each section provides a detailed analysis of a
different type of asset class.

e Section IV.2.3 examines the VaR of interest rate sensitive portfolios. These portfolios are
represented as a sequence of cash flows that are mapped to standard maturities along a
term structure of interest rates. Their risk factors are the LIBOR curve and usually one
or more term structures of credit spreads. The risk factor sensitivities are the PVV01s of
the mapped cash flows. Here we use numerical examples to show how to disaggregate
the total VaR into LIBOR VaR and credit spread VaR components.

e Section 1V.2.4 presents the first case study of this chapter, on the estimation of VaR
for a portfolio of UK bonds. We demonstrate how to use principal component analysis
to reduce the dimension of the risk factors from 60 to only 3, and describe some risk
management applications of this technique.

e Section IV.2.5 examines the normal linear VaR for stock portfolios, from a small port-
folio with just a few positions on selected stocks, to a large international portfolio that
has been mapped to broad market risk factors. We focus on the decomposition of VaR
into systematic and specific factors, and the moving average methods that are used to
estimate the covariance matrix.

e Section 1V.2.6 shows how to estimate the total VaR for an international stock portfolio,
how to decompose this into specific and systematic VaR, and how to disaggregate total
VaR into equity VaR, foreign exchange (forex) VaR and interest rate VaR components.
We use numerical and empirical examples to calculate stand-alone and marginal VaR
components for different types of risk factor, and to illustrate the sub-additivity property
of normal linear VaR when component VaRs are aggregated.

e Section IV.2.7 presents a case study on the normal linear VaR of a commodity futures
trading desk, using constant maturity futures as risk factors.

There are three other parametric linear VaR models that have analytic solutions for VaR.
These are the Student t, the normal mixture and the Student t mixture models. They are
introduced and illustrated in Sections 1V.2.8 and 1V.2.9. Of course, other parametric forms
are possible for return distributions but these do not lead to a simple analytic solution
and instead we must use Monte Carlo resolution methods. The formulae that we derive
in Section 1V.2.8 are based on the assumption that returns are i.i.d. We describe a simple
technique to extend these formulae so that they assume autocorrelated returns. However,
to include volatility clustering we would normally use Monte Carlo simulation for the
resolution.®

6 See Section 1V.4.3 for further details.
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Section 1V.2.10 explains how exponentially weighted moving averages (EWMAS) are
applied in the parametric linear VaR model, with a particular emphasis on the advantages
and limitations of the RiskMetrics™ VaR methodology that was introduced by JP Morgan in
the 1990s. Section 1V.2.11 derives analytic formulae for the expected tail loss associated with
different parametric linear VaR models. The formal derivation of each formula is then illus-
trated with numerical examples. Section 1V.2.12 presents a case study on estimating the VaR
and ETL for an exposure to the iTraxx Europe 5-year credit spread index. The distribution
of daily changes in the iTraxx index has a significant negative skew and a very large excess
kurtosis and, of the alternatives considered here, we demonstrate that its highly non-normal
characteristics are best captured by a mixture linear VaR model. Section 1V.2.13 concludes
by summarizing the main results in this long chapter. As usual there are numerous interactive
Excel spreadsheets on the CD-ROM to illustrate virtually all of the examples and all three
case studies.

IV.2.2 FOUNDATIONS OF NORMAL LINEAR VALUE AT RISK

This section introduces the normal linear VaR formula, first when VaR is measured at the port-
folio level and then when the systematic VaR is measured by mapping the portfolio to its risk
factors. We also discuss the rules for scaling normal linear VaR under both i.i.d. and autocorre-
lated returns. Then we derive the risk factor VaR, and its disaggregation into stand-alone VaR
components and into marginal VaR components. We focus on consequences of the normal
linear model’s assumptions for aggregating VaR. Finally, we derive the incremental VaR, i.e.
the impact on VaR of a small trade, in a linear portfolio with i.i.d. normally distributed returns.

IV.2.2.1 Understanding the Normal Linear VaR Formula

The formal definition of VaR was given in Section 1V.1.4, and we summarize it here for
convenience. Let

Xh[ _ BhtPHrh - Pt
P,

be the discounted h-day return on a portfolio. Here B, denotes the price of a discount bond
maturing in h trading days and P, denotes the value of the portfolio at time t. Then the
1000% h-day VaR estimated at time ¢ is

ViR, = {—xm as a percentage of the portfolio value P, (IV.2.1)

—x.«P.  When expressed in value terms

where x;, ., is the lower a quantile of the distribution of X, i.e. P(X, < xp.) = Q.

Derivation of the Formula

The normal linear VaR formula was derived in Section 1V.1.5.1. It is convenient to summarize
that derivation here, but readers should return to Section 1V.1.5 if the following is too concise.
In the normal linear VaR model we assume the discounted h-day returns on the portfolio follow
independent normal distributions, i.e. X, is i.i.d. and

Xy ~ N (W, o). (IV.2.2)
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The parameters w,, and o, are the forecasts made at time ¢ of the portfolio’s expected return

over the next h days, discounted to today, and its standard deviation. Amongst other things,

these will depend on both the risk horizon and the point in time at which they are forecast.
Applying the standard normal transformation to (I1V.2.2) gives’

Xt_ t ta t to t
P(Xht<xht,a):P( ! al <xh‘ Mh>=P(Z<u)=a7
Ohe Ohe Ot

where Z is a standard normal variable. Thus

Xhe,a — Mohe

Ot

= (), (IV.2.3)

where ®~Y(a) is the standard normal a quantile value, such as

®%(0.01) = —2.32635, ®%(0.025) = —1.95996,

. . (IV.2.4)
®40.05) = —1.64485,  ®%0.1) =-1.28155.

By the symmetry of the normal distribution function,
O Ha)=—d (1 —a).

Hence, substituting the above and (1V.2.1) into (IV.2.3) gives the 1000% h-day parametric
linear VaR at time ¢, expressed as a percentage of the portfolio value, as

VaRht,a = q>71(1 - 0{)0’;“ — Wope- (|V25)

To estimate normal linear VaR we require forecasts of the h-day discounted mean and stan-
dard deviation of the portfolio return, and to obtain these forecasts we can make up scenarios
for their values, scenarios that would normally be based on the portfolio’s risk factor mapping,
so that we can find separate scenario estimates for the different risk factor component VaRs.
Alternatively, we can base the forecasts for the mean and standard deviation of the portfolio
return on historical data for the assets or risk factors. This is useful, to compare with the results
based on the historical simulation model using identical data.

When using historical data, for a long-only portfolio we would create a constant weighted
historical return series based on the current allocations.? Then we base our (ex-ante) forecasts
of the mean and standard deviation on the (ex-post) sample estimates of mean and variance.

For a long-short portfolio we use changes (P&L) on the risk factors and keep the holdings
constant rather than the portfolio weights constant. For a cash-flow map, we keep the PVV01
vector constant, and use absolute changes in interest rates and credit spreads. In both cases
we produce a P&L series for the portfolio. Then the mean and standard deviation of the P&L
distribution, and hence also the VaR, are estimated directly in value terms.

7 We have applied the same transformation to both sides of the inequality in the square bracket, so the probability o remains unchanged.
8 A justification of the constant weights assumption was given in Section 1V.1.5.3.
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Drift Adjustment

From the discussion in Section 1V.1.5.2 we know that a non-zero discounted expected return
i can be important. Fund managers, for instance, may sell their services on the basis of
expecting returns in excess of the discount rate. Figure 1V.2.1 illustrates how a positive mean
discounted return will have the effect of reducing the VaR. We have drawn here a normally
distributed h-day discounted returns density at time ¢, with positive mean ,, and where the
area under the curve to the left of the point w,, — ®1 — a)o, is equal to «, by the definition
of VaR.

The h-day Discounted Returns Density
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Figure 1V.2.1 Illustration of normal linear VaR

In Section 1V.1.5.2 we showed that it is only for long risk horizons and when a portfolio
is expected to return substantially more than the discount rate that the drift adjustment to
VaR, i.e. the second term in (1V.2.5), will have a significant effect on VaR. Hence, we often
assume the portfolio is expected to return the risk free rate so that jv,,, the present value of
the expected return, is zero. We shall assume this in the following, unless explicitly stated
otherwise.

Without the drift adjustment, the normal linear VaR formula is simply

VaR,, . = & X1 — a)oy.

Henceforth in this chapter we shall also drop the implicit dependence of the VaR estimate on
the time at which the estimate is made, and write simply

VaR,, = ® X1 — a)o, (IV.2.6)

for the 100a% h-day VaR estimate made at the current point in time, when the portfolio’s
expected return is the discount rate.
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Scaling VaR to Different Risk Horizons

When normal linear VaR estimates are based on daily returns to the portfolio, we obtain a
1-day VaR estimate using the daily mean p, and standard deviation o in the VaR formula.
How can we scale this 1-day VaR estimate up to a 10-day VaR estimate, or more generally to
an h-day VaR estimate?

The normal linear VaR estimate assumes that the daily returns are i.i.d. We have to
approximate the returns by the log returns, as explained in Section 1V.1.5.4, then

e the h-day mean is h x daily mean, j;, =hpy;
e the h-day variance is h x daily variance, o? = ho?.

In this case, it now follows directly from (1V.2.5) that
VAR, , ~ & (1 —a)vVhor —h

So, under the assumption of i.i.d. returns, it is only when the portfolio is expected to return
the discount rate, i.e. p, =0, that

VAR, , ~vh x VAR, .. (IV.2.7)

Note that the scaling argument above applies to any base frequency for the VaR. For
instance, we could replace ‘day’ with ‘month’ above. Then the square-root-of-time scaling
rule will apply to scaling the 1-month VaR to longer horizons, but only if we assume the
monthly return on the portfolio is the risk free (discount) rate. For example, if this assump-
tion holds and the 1-month VaR is 10% of the portfolio value, then the 6-month VaR will
be /6 x 10% = 24.5% of the portfolio value. When returns are normal and i.i.d. and the
expected return on the portfolio is the risk free rate, we could also apply the square-root
law for scaling from longer to shorter horizons. For example, annual VaR = 25% = monthly
VaR = 25% x 12712 =7.22%.

However, the square-root scaling rule should be applied with caution. Following our dis-
cussion in Section 1V.1.5.4, we know that even when the returns are i.i.d. the square-root
scaling rule is not very accurate, except for scaling over a few days, because we have to make
a log approximation to returns and this approximation is only accurate when the return is very
small.® Moreover, it does not usually make sense to scale 1-day VaR to risk horizons longer
than a few days, because the risk horizon refers to the period over which we expect to be
able to liquidate (or completely hedge) the exposure. Typically portfolios are rebalanced very
frequently and the assumption that the portfolio weights or risk factor sensitivities remain
unchanged over more than a few days is questionable. Hence, to extrapolate a 1-day VaR to,
for instance, an annual VaR using a square-root scaling rule is meaningless.

How Large is VaR?

The assumption that portfolio returns are i.i.d. and normal is usually not justified in practice,
so the normal linear VaR model gives only a very crude estimate for VaR. However, this is

9 See Section 1.1.4.4 for further explanation of this point.
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still very useful as a benchmark. It provides a sort of “plain vanilla’ VaR estimate for a linear
portfolio, against which to measure more sophisticated models.

Table IV.2.1 illustrates the normal linear VaR given by (1V.2.6) for different levels of volatil-
ity and some standard choices of significance level and risk horizon. All VaR estimates are
expressed as a percentage of the portfolio value. Each row corresponds to a different volatil-
ity, and these volatilities range from 5% to 100%. We only include risk horizons of 1 day and
10 days in the table, since the VaR for other risk horizons can easily be derived from these. In
fact, we only really need to display the 1-day VaR figures, because the corresponding 10-day
VaR is just +/10 times the 1-day VaR under the i.i.d. normal assumption.

Table IV.2.1 Normal linear VaR for different volatilities, significance levels and risk horizons

o 0.1% 1% 5% 10%
h 10 1 10 1 10 1 10 1
5% 3.1% 1.0% 2.3% 0.7% 1.6% 0.5% 1.3% 0.4%
10% 6.2% 2.0% 4.7% 1.5% 3.3% 1.0% 2.6% 0.8%
15% 9.3% 2.9% 7.0% 2.2% 4.9% 1.6% 3.8% 1.2%
20% 12.4% 3.9% 9.3% 2.9% 6.6% 2.1% 5.1% 1.6%
25% 15.5% 4.9% 11.6% 3.7% 8.2% 2.6% 6.4% 2.0%
30% 18.5% 5.9% 14.0% 4.4% 9.9% 3.1% 7.7% 2.4%
40% 24.7% 7.8% 18.6% 5.9% 13.2% 4.2% 10.3% 3.2%
50% 30.9% 9.8% 23.3% 7.4% 16.4% 5.2% 12.8% 4.1%
75% 46.4% 14.7% 34.9% 11.0% 24.7% 7.8% 19.2% 6.1%
100% 61.8% 19.5% 46.5% 14.7% 32.9% 10.4% 25.6% 8.1%

In our empirical examples we shall very often calculate the 1% 10-day VaR, as this is
the risk estimate that is used for market risk regulatory capital calculations. Hence, from the
results in Table IV.2.1:

e in major currency portfolios that have recently had volatility in the region of 10%, we
would expect the 1% 10-day VaR estimate to be about 5% of the portfolio value;

e equity portfolios, with volatilities running at 40-60% at the time of writing, could have
1% 10-day VaR of about 25% of the portfolio value;

e credit spreads have been extremely volatile recently and so interest rate VaR is unusually
high at the moment, unless all counterparties have AA credit rating;

e energy portfolios, and many other commodity portfolios, tend to have the highest VaR.
With oil prices being highly volatile at the time of writing, the 1% 10-day VaR for energy
portfolios could be up to 40% of the portfolio value!

1V.2.2.2 Analytic Formulafor Normal VaR when Returns are Autocorrelated

It is important to simplify models when they are applied to thousands of portfolios every day.
A very common simplification is that returns are not only normally distributed but also
generated by an i.i.d. process. But in most financial returns series this assumption is simply
not justified. Many funds, and hedge funds in particular, smooth their reported results, and
this introduces a positive autocorrelation in the reported returns. Even when returns are not



Parametric Linear VaR Models 61

autocorrelated, squared returns usually are, when they are measured at the daily or weekly
frequency. This is because of the volatility clustering effects that we see in most markets.

There are no simple formulae for scaling VaR when returns have volatility clustering.
Instead, we could apply a GARCH model to simulate daily returns over the risk horizon,
as explained in Sections 1V.3.3.4 and 1V.4.3. In this section we derive a formula for scaling
VaR under the assumption that the daily log returns r, are not i.i.d. but instead they follow a
first order autoregressive process where g is the autocorrelation, i.e. the correlation between
adjacent log returns.*®

Write the h-period log return as the sum of h consecutive one-period log returns:

h—1
The = E Vitie
i=0

Assuming the log returns are identically distributed, although no longer independent, we can
set W = E(r,;) and o®> = V(r,,;) for all i. Autocorrelation does not affect the scaling of the
expected h-period log return, since E (ry,) = foj E(r.;) =h. So the h-day expected log return
is the same as it is when the returns are i.i.d.

But autocorrelation does affect the scaling standard deviation. Under the first order
autoregressive model the variance of the h-period log return is

h—1 h—1
V() = Z V() + 2 Z COV(Tt+ia Tc+j) =0’ (h +2 (h— i)Qi) .

i=0 i#j i=1

Now we use the identity

S ity = — [l —x) —xl—x)],  |xl <L (IV.2.8)
i=1 1 =x)7?
Settingx =90 andn=h — 1 in (1V.2.8) gives

Q
(1-9)?

Vmg=o%}+2 [w—lxl—gy—ml—d*ﬂ>. (1V.2.9)
This proves that when returns are autocorrelated with first order autocorrelation coefficient
o then the scaling factor for standard deviation is not +/h but \/1: where

Q

h=h+2
(1-9)?

[(h—D(1—-0)—0(1-0"1)]. (1V.2.10)
Hence, we should scale normal linear VaR as

VaR,, =Vh &1 — a)o, —h . (IV.2.11)

10 This representation for a time series is introduced in Section 1.3.7.
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Even a small autocorrelation has a considerable effect on the scaling of volatility and VaR.
The following example shows that this effect is much more significant than the effect of a
mean adjustment term when the portfolio is not expected to return the risk free rate. Thus for
the application of parametric linear VaR to hedge funds, or any other fund that smoothes its
returns, the autocorrelation adjustment is typically more important than an adjustment to the
VaR that accounts for a positive expected excess return.

EXAMPLE IV.2.1: ADJUSTING NORMAL LINEAR VAR FOR AUTOCORRELATION

Suppose a portfolio’s daily log returns are normally distributed with a standard deviation of
1% and a mean of 0.01% above the discount rate. Calculate (a) the portfolio volatility and
(b) the 1% 10-day normal linear VaR of the portfolio under the assumption of i.i.d. daily
log returns and under the assumption that daily log returns are autocorrelated with first order
autocorrelation ¢ =0.2.

SOLUTION  Under the i.i.d. assumption and assuming 250 trading days per year, the annual
excess return is 0.01% x 250 = 2.5% and the volatility is

1% x /250 = 15.81%.
The 1% 10-day VaR is
2.32635 x 0.01 x /10 — 10 x 0.0001 =0.0726.

That is, the 1% 10-day VaR is 7.26% of the portfolio’s value.

But under the assumption that daily log returns have an autocorrelation of 0.2, the volatility
and the VaR will be greater. The adjustment factor, i.e. the second term on the right-hand side
of (IV.2.10) is calculated in the spreadsheet. It is 124.375 for h = 250, and 4.375 for h = 10.
Hence, the volatility is

1% x +/374.375 = 19.35%,
and the 1% 10-day VaR is

2.32635 x 0.01 x +/14.375 — 10 x 0.0001 = 0.0872.
That is, the 1% 10-day VaR is now 8.72% of the portfolio’s value.
Following this example, some general remarks are appropriate.

e Even this relatively small autocorrelation of 0.2 increases the 1% 10-day VaR by about
one-fifth, whereas the daily mean excess return of 0.01% (equivalent to an annual
expected return of 2.5% above the discount rate) only decreases the 1% 10-day VaR
by 0.1%.

e The higher the autocorrelation and the longer the risk horizon, the greater the effect that a
positive autocorrelation has on increasing the VaR. For higher autocorrelation and longer
risk horizons, the VaR could easily double when autocorrelation is taken into account.
And of course, negative autocorrelation decreases the VaR in a similar fashion.
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IV.2.2.3 Systematic Normal Linear VaR

For reasons that have been discussed in the previous chapter, it is almost always the case that
the risk manager will map each portfolio to a few well-chosen risk factors.* The systematic
return or P&L on a portfolio is the part of the return that is explained by variations in the risk
factors. In a linear portfolio it may be represented as a weighted sum,

Y=> 60X, (1V.2.12)
i=1

where X, denotes the return or P&L on the ith risk factor and the coefficients 0, denote the
portfolio’s sensitivity to the ith risk factor.!? If we use the risk factor returns on the right-hand
side of (1V.2.12) rather than their P&L, and the sensitivities are measured in percentage terms,
then Y is the systematic return; otherwise Y is the systematic P&L on the portfolio."

To calculate the systematic normal linear VVaR we need to know the expectation E(Y;) and
variance V(Y;) of the portfolio’s h-day systematic return or P&L. We can use the factor model
(IV.2.12) to express these in terms of the expectations, variances and covariances of the risk
factors. To see this, write the vector of expected excess returns on the risk factors as

W, = (EXw), -, EXo)) s
write the vector of current sensitivities to the m risk factorsas 6= (0., ..., 0,,)’ and denote the

m X m covariance matrix of the h-day risk factor returns by €,. Then the mean and variance
of the portfolio’s h-day systematic returns or P&L may be written in matrix form as'*

E(Y)) =0'w,, WV(Y,)=60'%,6. (1V.2.13)

The normal linear VaR model assumes that risk factors have a multivariate normal
distribution; hence, the above mean and variance are all that is required to specify the
entire distribution. Substituting (1V.2.13) into (1V.2.5) gives the following formula for the
1000% h-day systematic VaR:

Systematic VaR, , = ® (1 —a)v/0'R,0 — ', . (IV.2.14)
In many cases we assume that the expected systematic return is equal to the discount

rate, in which case the discounted mean P&L will be zero and (1V.2.14) takes a particularly
simple form:

Systematic VaR, , = ® (1 — a)/0'R2,0. (IV.2.15)

11 Risk factor mapping models are specific to each asset class, and were explained in detail in Chapter 111.5.

12 1f the mapping has a constant term we set X; = 1.

13 1f the risk factor sensitivities are also measured in present value terms (as is the PV01, for instance) then the above P&L is also in
present value terms. Otherwise (1V.2.12) represents the undiscounted P&L. More specific details are given in Section 111.5.2.7.

14 See Sections 1.2.4 and 1V.1.6.3, where the same matrix forms were applied specifically to cash flow portfolios.
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The above shows how the systematic normal linear VaR can be obtained straight from the
risk factor mapping. We only need to know the current:

e estimate of the risk factor sensitivities 0;
o forecast of the h-day risk factor returns covariance matrix 2;,.

Note that both these inputs can introduce significant errors into the VaR estimate, as will be
discussed in detail in Chapter I1V.6.

A common assumption is that each of the risk factors follows an i.i.d. normal process. In
the absence of autocorrelation or conditional heteroscedasticity in the processes, the square-
root-of-time rule applies. In this case,

In other words, each element in the 1-day covariance matrix is multiplied by h. Thus, just as
for the total VaR in (IV.2.7), the h-day systematic VaR (1V.2.15) can be scaled up from the
1-day systematic VaR using a square-root scaling rule:

Systematic VaR, , = v/h x Systematic VaR, .

Two simple numerical examples of normal linear systematic VaR have already been given in
Section IV.1.6. A large number of much more detailed examples and case studies on normal
linear systematic VaR for cash flows, stock portfolios, currency portfolios and portfolios of
commodities will be given in this chapter and later in the book.

1V.2.2.4 Stand-Alone Normal Linear VaR

In Section IV.1.7 we explained, in general non-technical terms, how systematic VaR may be
disaggregated into components consisting of either stand-alone VaR or marginal VaR, due to
different types of risk factor. The stand-alone VaR is the systematic VaR due to a specific type
of risk factor. So, depending on the type of risk factor, stand-alone VaR may be called equity
VaR, forex VaR, interest rate VaR, credit spread VaR or commodity VaR.

Due to the diversification effect between risk factor types, and using the summation rule for
the variance operator, in the normal linear model the sum of the stand-alone VaRs is greater
than or equal to the total systematic VaR, with equality only in the trivial case where all the risk
factors are perfectly correlated. However, in the next subsection we show how to transform
each stand-alone VaR into a corresponding marginal VaR, where the sum of the marginal
VaRs is equal to the total risk factor VaR.

In this subsection we specify the general methodology for calculating stand-alone VaRs
in the normal linear VaR model. Although the derivation of theoretical results is set in the
context of the normal linear VaR model, it is important to note that similar aggregation and
decomposition rules apply to the other parametric linear VaR models that we shall introduce
later in this chapter.

For the disaggregation of systematic VaR into different components we need to partition
the risk factor covariance matrix €, into sub-matrices corresponding to equity index, interest
rate, credit spread, forex and commodity risk factors. In the following we illustrate the decom-
position when there are just three risk factor types, and we shall assume these are the equity,
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interest rate and forex factors. Although we do not cover this explicitly here, other classes of
risk factor may of course be included.

Let the risk factor sensitivity vector 0, estimated at the time that the VaR is measured, be
partitioned as

6= (6}, 0, 0%)", (IV.2.17)

where 0;, 0, and 6y are column vectors of equity, interest rate and forex risk factor sensitiv-
ities. For simplicity we assume the interest rate exposure is to only one risk free yield curve,
but numerical examples of interest rate VaR when there are several yield curve risk factors
and the exposures are to lower credit grade entities are given in Section 1V.2.3.

For ease of aggregation it is best if all three vectors 0, 6, and 0 are expressed in percent-
age terms, or all three are expressed in nominal terms. Table 1V.2.2 explains how these vectors
are measured, and here we assume the numbers of equity, interest rate and forex risk factors
are ng, ny and ny respectively. We also use the notation:

e P to denote the value of the portfolio in domestic currency at the time the VaR is
measured;

e 3, to denote the portfolio’s percentage beta with respect to the ith equity risk factor;

e PVO0L1, to denote the portfolio’s PVV01 with respect to the ith interest rate risk factor;

e X, to denote the portfolio’s nominal exposure to the ith foreign currency in domestic

terms.
Table 1V.2.2 Risk factor sensitivities
Percentage sensitivities Nominal sensitivities
Equity 0: =B ....0,) 0:=P(@,,....53,)
Interest rate 0, =P~(PV01,,...,PV0L,,)’ 0,=(PVO0l,,...,PVO0L, )
Forex 0x=(1,..., 1y 0y =Xy, ..., X))

Now we partition the h-day covariance matrix 2, into sub-matrices of equity risk factor return
covariances g, interest rate risk factor return covariances 2, and forex risk factor return
covariances 2y, and their cross-covariance matrices Rz, Rrx, and Rzx,. Thus we write the
risk factor covariance matrix in the form

L, Rern  Rexi
=%, 2 Ll (IV.2.18)
Q;xh Q;Xh Ry
This partitioned matrix has off-diagonal blocks equal to the cross-covariances between differ-
ent types of risk factors. For instance, if there are five equity risk factors and four foreign
exchange risk factors, the 5 x 4 matrix 2y, contains the 20 pairwise h-day covariances
between equity and foreign exchange factors, with i,jth element equal to the covariance
between the ith equity risk factor and the jth forex risk factor.
Ignoring any mean adjustment, the systematic normal linear VaR is given by (IV.2.15) with
0 partitioned as in (1V.2.17) and with €, given by (1V.2.18). With this notation it is easy to
isolate the different risk factor VaRs.
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e Equity VaR, i.e. the risk due to equity risk factors alone:
Set 6, =0, =0and (IV.2.15) yields

Equity VaR,., = & (1 — a),/0,5,0;. (1V.2.19)

o Interest rate VaR, i.e. the risk due to interest rate risk factors alone:
Set 0, =0, =0and (IV.2.15) yields

Interest rate VaR, , = ® (1 — a),/ 0}, Q2z0z. (IV.2.20)

e Forex VaR, i.e. the risk due to forex risk factors alone:
Set 0, =0, =0and (1V.2.15) yields

Forex VaR, , = ® (1 — o),/ 0} 2x.0x. (Iv.2.21)

Even if the cross-covariance matrices are all zero the total VaR would not be equal to the sum
of these three ‘stand-alone’ VaRs. The only aggregation rules we have are that the sum of the
stand-alone components equals the total systematic VaR if and only if the risk factors are all
perfectly correlated, and that the sum of the squared stand-alone VaRs is equal to the square
of the total VaR if the cross correlations between risk factors are all zero.™

IV.2.25 Marginal and Incremental Normal Linear VaR

In Section 1V.1.7.3 we showed that the total systematic VaR is equal to the sum of the marginal
component VaRs, to a first order approximation. In the normal linear model the gradient vector
(IV.1.29) is obtained by differentiating (1V.2.15) with respect to each component in 6.

Using our partition of the covariance matrix as in (IV.2.18) above, and the risk factor
sensitivities vector 0 partitioned as in (1V.2.17), the equity marginal VaR is given by the
approximation (1V.1.30) with 6, = 0 = 0, and so forth for the other component VaRs. That
is, we set the other risk factor sensitivities in 6 to zero, compute the gradient vector and then
approximate the marginal VaR as

Marginal VaR ~ 6'g(0). (IvV.2.22)

In Section 1V.1.7.3 we also showed how to use the gradient vector to assess the VaR impact
of a trade, i.e. to compute the incremental VaR. In the specific case of the normal linear VaR
model the incremental VaR is, to a first order approximation, given by

Incremental VaR ~ A0'g(0), (Iv.2.23)

where 0 is the original risk factor sensitivity vector and A9 is the change in the risk factor
sensitivity vector as a result of the trade. Note that this approximation can lead to significant
errors if used on large trades. The approximation rests on a Taylor linearization of the paramet-
ric linear VaR, but the parametric linear VaR is actually a quadratic function of the sensitivity
vector.

15 This is a feature of parametric linear VaR and it would not be true if VaR was measured using simulation.
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To apply the general formulae (1V.2.22) and (1V.2.23) we must derive the gradient vector
g(0) under the normal linear VaR model assumptions. The 100a% h-day normal linear sys-
tematic VaR is given by (1V.2.25). Differentiating this, using the chain rule, gives the gradient
vector of first partial derivatives, which in this case is

g(0) = d (1 — o) (£2,0) (6',6) . (IV.2.24)

The gradient vector, which Garman (1996) calls the Del VaR vector, has elements equal to the
derivative of VaR with respect to each of the components in 6. Now using (1V.2.22) gives the
marginal VaR. A numerical illustration of the formula is given in Example 1V.2.5 below.

Specific examples of the decomposition of normal linear VaR into stand-alone and marginal
VaR components, and of the calculation of incremental VaR, will be given below. For instance,
see Examples 1V.2.4-1V.2.6 for cash flows and Examples 1V.2.14-1V.2.16 for international
equity portfolios.

V.23 NORMAL LINEAR VALUE AT RISK
FOR CASH-FLOW MAPS

This section analyses the normal linear VaR of a portfolio of bonds, loans or swaps, each of
which can be represented as a cash flow. The risk factors are one or more yield curves, i.e. sets
of fixed maturity interest rates of a given credit rating. Later in this section we shall decompose
each interest rate into a LIBOR rate plus a credit spread. In that case the risk factors are the
LIBOR curves and possibly also one or more term structures of credit spreads with different
credit ratings.

The excess return on the portfolio over the discount rate will be significantly different from
zero only when the portfolio has many exposures to low credit quality counterparties and
when the risk horizon is very long. Since the PVV01 vector is expressed in present value terms,
and since there is no constant term in the risk factor mapping of a cash flow, the discounted
expected return on the portfolio is zero, so it is only the volatility of the portfolio P&L that
determines the VaR.

In this section all cash flows are assumed to have been mapped to standard maturity interest
rates in a present value and volatility invariant fashion. Since we have covered cash-flow
mapping in considerable detail in Section 111.5.3, and furnished several numerical examples
there, we shall assume the reader is familiar with cash-flow mapping in the following. We
characterize a portfolio by its mapped cash flow at standard vertices, or by its P\V01 sensitivity
vector directly.

1V.2.3.1 Normal Linear Interest Rate VaR

We begin by considering only the interest rate risk factors, without decomposing these into
LIBOR and credit spread components. In Section 1V.1.6.3 we derived a formula for normal
linear interest rate VaR, repeated here for convenience:

Interest rate VaR, , = ® (1 — a)/0' 2,0, (IV.2.25)
where 6 = (PV01,, ..., PV01,)’ is the vector of PVV01 sensitivities to the various interest rates

that are chosen for the risk factors.
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A simple example of normal linear VaR for a cash-flow portfolio was given in Section
1V.1.6.3, and the first remark that we make here is that in that example the covariance matrix
was expressed in basis points. The reason for this is that the PVO1 vector contains the risk
factor sensitivities to absolute, basis point changes in interest rates, and not to relative changes.

In highly developed markets, returns on fixed income portfolios are usually measured in
terms of changes, rather than relative terms. This is natural because the change in the interest
rate is the percentage return on the corresponding discount bond. Volatilities of changes in
interest rates are often of the order of 100 basis points. But in some countries, such as Brazil
or Turkey (at the time of writing), interest rates are extremely high and variable and their
volatilities are so high that they are commonly quoted in percentage terms. In this case care
should be taken to ensure that the PVO1 sensitivities are also adjusted to relate to percentage
changes in interest rates or, when PVO1 sensitivities relate to changes, the covariance matrix
of interest rates must be converted to basis point terms. The following example illustrates how
to do this, assuming the returns are normal and i.i.d.

EXAMPLE IV.2.2: CONVERTING A COVARIANCE MATRIX TO BASIS POINTS

Suppose two interest rates have a correlation of 0.9, that one interest rate is at 10% with a
volatility of 30% and the other is at 8% with a volatility of 25%. What is the daily covariance
matrix in basis point terms?

SOLUTION For the 10% rate with 30% volatility, the volatility is 0.1 x 0.3 =300 basis
points; for the 8% rate with 25% volatility, the volatility is 0.08 x 0.25 = 200 basis points.
For the correlation of 0.9, the covariance is 0.9 x 300 x 200 = 54,000 in basis points squared.
Hence the annual covariance matrix is

90,000 54,000
54,000 40,000

and, assuming 250 trading days per year, the daily covariance matrix is, in basis point terms
360 216
216 160)°

IV.2.3.2 Calculating PV01
Consider a cash flow C; at some fixed maturity T, measured in years, which we assume for
simplicity is an integer.'® The present value of the cash flow based on a discretely compounded
discount rate R, expressed in annual terms, is

PV(Cr,Ry) =Cr(14+Rp) " (Iv.2.26)
Then, by definition,

PVOlT - PVOl(CT, RT) = I)\/(CT7 RT - 0.010/0) - PV(CT, RT). (IV227)

16 See Section 111.1.2.2 for details on discounting cash flows for a non-integer number of years.
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A useful and very accurate approximation to (IV.2.27) is derived in Section 111.1.8.2. It is
repeated here for convenience:

PVOL; &~ TCr(1+ Ry)~ ™+ x 107, (IV.2.28)

Again, this is valid when T is an integer number of years. Otherwise a small adjustment should
be made to the discount factor, as explained in Section 111.1.8.2.

Because of the unwanted technical details when working with discretely compounded rates,
practitioners usually convert discretely compounded rates into their continuously compounded
equivalents for calculations. Using the continuously compounded rate r that gives the same
present value as the discretely compounded rate, we have, for any maturity T, not necessarily
an integral number of years,

PV(CT, RT) = CTeXp(_TTT). (I\/.2.29)
Thus the P01 approximation for any T may be written
PVO1; ~ TCrexp(—r;T) x 107, (1V.2.30)

See Section 111.1.8.2 for further details and numerical examples.

The examples in the remainder of this section assume that a cash flow has been previously
mapped to the interest rate risk factors, and that the values of the mapped cash flows are not
discounted to present value terms. This is because the P01 vector 6 of risk factor sensitivities
themselves will convert the change in portfolio value at some time in the future into present
value terms.

We now consolidate the application of the normal linear VaR model to cash-flow portfolios
by considering a simple numerical example. We make the assumption that the interest rate
risk factors are the same as those used for discounting, so there is no drift adjustment term in
the VaR formula. We also assume that interest rate changes are generated by i.i.d. multivariate
normal processes, so that we can scale the normal linear VaR using the square-root-of-time
rule. In particular, the h-day covariance matrix is just h times the 1-day covariance matrix.

EXAMPLE 1V.2.3: NORMAL LINEAR VAR FROM A MAPPED CASH FLOW
Consider a cash flow of $1 million in 1 year and of $1.5 million in 2 years’ time. Calculate

the volatility of the discounted P&L of the cash flows, given that:

e the 1-year interest rate is 4% and the 2-year interest rate is 5%;
e the volatility of the 1-year rate is 100 basis points, and the volatility of the 2-year rate is
75 basis points; and
e their correlation is 0.9.
Hence calculate the 5% 1-day and the 1% 10-day normal linear VaR.

SOLUTION In the spreadsheet we use (1V.2.27) to calculate the PV01 vector as

0 = (92.465, 259.188)".



70 Value-at-Risk Models

Then we calculate the covariance matrix in basis point terms from the volatilities and
correlation, as described above, yielding

o _ (10.000 6,750
%=\ 6,750 5,625)"

Now the volatility of discounted P&L is

\/ (92.456 259.188) <1O’OOO 6’75O>< 92'456> — $28, 052.

6,750 5,625/ \259.188

To convert this into a 100a% h-day VaR figure we use the relevant standard normal critical
value from (IV.2.4) and the square-root-of-time rule. Assuming 250 risk days per year, the 5%
1-day VaR corresponding to the volatility of $28,052 is

1.64485 x 28,052/+/250 = $2918.
Similarly, assuming the number of 10-trading-day periods per year is 25, the 1% 10-day VaR is

2.32635 x 28,052 /+/25 = $13,052.

1V.2.3.3 Approximating Marginal and I ncremental VaR

The gradient vector (1V.2.24) allows us to express, to a first order approximation, the incre-
mental effect on VaR resulting from each of the cash flows in a trade. Denote the change in
the PVO1 cash-flow sensitivity vector as a result of a small trade by A6. Each incremental
VaR corresponding to a cash flow at one specific maturity is an element of another vector
AB ® g(0), where ® denotes the column vector obtained as the element by element product
of two column vectors. The net incremental VaR of the new trade is given by the sum of
the separate components of this vector, i.e. by (1V.2.23). Using this in (1V.2.23) will give a
first order approximation to the change in VaR when any of the PVV01 cash-flow sensitivities
change.

The following example illustrates how we can approximate the effect of a new trade on the
VaR by considering only the cash flow resulting from the proposed trade, thus avoiding the
need to revalue the VaR for the entire portfolio each time a new trade is considered.

EXAMPLE 1V.2.4: INCREMENTAL VAR FOR A CASH FLOW

Consider a cash-flow map with the following sensitivity vector:

Year: 1 2 3
PV01($): 1000 1500 2000

Suppose the interest rates at maturities 1, 2 and 3 years have volatilities of 75 basis points, 60
basis points and 50 basis points and correlations of 0.95 (1yr, 2yr), 0.9 (1yr, 3yr), and 0.975
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(2yr, 3yr). Find the 1% 10-day normal linear VaR. Now assume that interest rates are 4%,
4.5% and 5% at the 1-year, 2-year and 3-year vertices and suppose that a trader considers
entering into a swap with the following cash flow:

Year: 1 2 3
Cashflow ($m) 3 -3 —-0.25

What is the incremental VVaR of the trade?

SOLUTION The 1-day risk factor covariance matrix, in basis point terms, is
22.5 17.1 13.5
Q=171 14.4 11.7 ] .
13.5 11.7 10.0

For instance, the top left element 22.5 for the 1-day variance of the 1-year rate is obtained as
75%/250=22.5. We are given

6= (1000 1500 2000)'
and so
225 171 135\ (1000
'R0 =(1000 1500 2000)|17.1  14.4  11.7 | [ 1500 | =270.4 x 10°.
135 117 10.0/ \2000

The square root of this, i.e. $16,443, is the 1-day standard deviation of the discounted P&L.
The 10-day standard deviation is obtained, using the square-root-of-time rule, as

010 = $16,443 x /10 = $52,000.
Hence the 1% 10-day normal linear VaR is

2.32635 x $52,000 = $120,970.
For a 10-day risk horizon,

22.5 171 13.5\ /1000 751,500
2,0=10x|17.1 144 11.7 ] | 1500 | = | 621,000 | .

135 11.7 10.0/ \ 2000 510,500
From above we have /0'2,,0 = $52,000. Hence the DelVaR vector is

751,500 33.6202
9(0) = 232635 (621,000) = (27.7820) .

52,000 \ 510 500 22.8385
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Calculating the P01 sensitivity vector of the swap’s cash flows, using (I1V.2.27) gives

277.3935
AB=| —525.8534
—61.7144

Hence, the components of the incremental VaR are

277.3935 33.6202 9,326
ABR®Q(0)=| —525.8534 | @ | 27.7820 | = | —14,609
—61.7144 22.8385 —1,409

This shows that the positive cash flow at 1 year increases the VaR by approximately $9326
but both of the negative cash flows on the swap will decrease the VaR, by approximately
$14,609 and $1409 respectively. The total incremental VaR for the swap is the sum of these,
i.e. approximately —$6693. Hence, adding the swap would reduce the VaR of the portfolio.

Incremental VaR is based on a linear approximation to the VaR, which is a non-linear function
of the risk factor sensitivities, so it should only be applied to assess the effect of trades that are
small relative to the overall size of the portfolio. Also, in order to properly compare the incre-
mental VaR of several different trades, the cash flows from these trades need to be normalized.
Obviously, if trade A has double the magnitude of the cash flows of trade B, the incremental
VaR of trade A will be twice that of trade B. That is, we should normalize the trades, so that
the incremental VaRs per unit of cash flow are compared. There are several ways of doing this.
For instance, we could divide each PV01 by the sum of the absolute values of all P\V01s in the
sensitivity vector of the trade, or we could divide each PV01 by the square root of the sum of
the squared PVVO1s. More details are given in Garman (1996).

1V.2.3.4 Disaggregating Normal Linear Interest Rate VaR

In this subsection we continue with simple numerical examples of normal linear interest rate
VaR to examine the case of an exposure to two yield curves. Such an exposure arises in
many circumstances: it can result from an international portfolio containing interest rate sen-
sitive securities; or from any type of foreign investment in forwards and futures;*” even in
international commaodity portfolios, where we may prefer to use constant maturity futures as
risk factors, the forex risk is usually managed by hedging with forex forwards and these are
mapped to the spot forex rate. A forex forward mapping thus gives rise to an exposure to the
foreign LIBOR curve.

In equity and commodity portfolios the interest rate risk factors are usually much less
important than the equity or commodity risk factors and, for international portfolios, the forex
risk factors. Usually the equity, commodity, interest rate and forex risk exposures are managed
by separate desks. Hence, in the examples in this section we keep things simple by considering
only the interest rate part of the risk.

17 Following our discussion in Section 111.5.2, we normally map an investment in equity forwards or futures to the spot price, using
the no arbitrage relationship between spot and futures, and thus the foreign discount curve becomes a set of risk factors.
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EXAMPLE IV.2.5: NORMAL LINEAR VAR FOR AN EXPOSURE TO TWO YIELD CURVES

In Table 1V.2.3 we display the P01 vectors, both in US dollars, for a portfolio with exposures
to the UK and US government yield curves. For simplicity we assume the portfolio has been
mapped to only the 1-year, 2-year and 3-year interest rates in each county, and the basis point
volatilities for these interest rates are given below each PV01. The correlation matrix of daily
interest rates is given in Table 1V.2.4. Calculate the 1% 10-day normal linear interest rate VaR,
the stand-alone VaR due to the US and UK vyield curve risk factors, and the marginal VaRs of
these risk factors.

Table 1V.2.3 PVO01 of cash flows and volatilities of UK and US interest rates

Interest Rate us UK

Maturity (years) 1 2 3 1 2 3
PV01($) 1000 —1500 2000 800 900 —750
\olatility (bps) 100 80 70 85 75 65

Table 1V.2.4 Correlations between UK and US interest rates

us UK
1 2 3 1 2 3

1 1 0.95 0.90 0.70 0.67 0.62
us 2 0.95 1 0.97 0.65 0.75 0.75

3 0.90 0.97 1 0.60 0.79 0.80

1 0.70 0.65 0.60 1 0.98 0.95
UK 2 0.67 0.75 0.79 0.98 1 0.99

3 0.62 0.75 0.80 0.95 0.99 1

SOLUTION Using the information given in Tables 1V.2.3 and 1V.2.4, the annual covariance
matrix is written in partitioned form as

Q= Qus Qus-uk
SZ,US'UK QUK '
where

1000 7600 6300
Qus = | 7600 6400 5432 |,
6300 5432 4900

7225 62475 5248.75
Qu=| 62475 5625 4826.25 |,
5248.75 4826.25 4225

5950 5025 4030
Qus uk = | 4420 4500 3900
3570 41475 3640
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We also write the PVO1 vector as
0= (8s. 0,0)-
where
0, = (1000, —1500, 2000), 6, = (800, 900, —750).

Under the usual normal i.i.d. assumption, the 1% 10-day total risk factor VaR is then

®7(0.99)vV 'R0 x \/10/250 = 2.32635 x 188,466 x 0.2 = $87,688.

For the stand-alone US interest rate VaR we simply use s and 0y in place of € and
0 (and similarly, we use .k and 6k for the UK interest rate VVaR). The results, which are
calculated in the spreadsheet for this example, are:

1% 10-day US interest rate VaR = $54,673,
1% 10-day UK interest rate VaR = $40,931.

So the sum of the stand-alone VaRs is $95,604, which is considerably more than the total
interest rate VaR.

However, the marginal VaRs do add up to the total interest rate VVaR. To calculate these we
first compute the DelVaR vector g(0) using (1V.2.24). Working at the annual level,*® we have

9(0) = (gEgU%) = ((215.52, 166.95, 145.79)’, (171.90, 160.60, 133.73)')’".
UK

Now we can recover the 1% annual total interest rate VaR as 6'g(0) and the two 1% annual
marginal VaRs as

1% annual US marginal VaR = 6;,,9(8,s) = $256,673
=1% 10-day US marginal VaR = $256,673 x 0.2 =$51,335.

Similarly,

1% annual UK marginal VaR = 6,,, g(6,x) = $181,763
=1% 10-day US marginal VaR = $181,763 x 0.2 = $36,353.

The sum of the marginal VaRs is $87,688, which is identical to the total interest rate VaR.

18 Note that in the last example we worked at the 1-day level, but in the linear VaR model the order of applying the square-root-of-time
rule does not matter.
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IV.2.3.5 Normal Linear Credit Spread VaR

An exposure to curves with different credit ratings arises from a portfolio with investments in
company bonds, corporate loans or swaps, asset backed securities, collateralized debt obliga-
tions and non-bank loans such as mortgages. All exposures can be mapped as cash flows at
standard vertices, and for each vertex we represent the risk factors as the LIBOR rate of that
maturity and the various spreads over LIBOR for each credit rating.

We now explain how to decompose the linear VaR of an interest rate sensitive portfolio into
LIBOR and spread components, using continuous compounding (because the mathematics is
S0 much easier). In this case we may write an interest rate of a given credit rating as the sum
of the continuously compounded LIBOR rate and the continuously compounded credit spread
for that rating. That is, for maturity T and at time ¢,

ro(t, T) =r(t, T) +5,(¢, T), (IV.2.31)

where r(t, T) denotes the spot LIBOR rate with maturity T at time ¢, and r, (¢, T) and s,(t, T)
respectively denote the interest rate and credit spread, both with credit rating q.

The VaR is calculated in exactly the same way as above, and the only difference is that
the variance of the interest rate r,(¢t, T) can, if we wish, be decomposed into three terms:
the variances of the LIBOR rate and the credit spread, and their covariance. This variance
decomposition is obtained by applying the variance operator to (1V.2.31):

V(ry (¢, T)) = V(r(¢t, T)) + V(s,(t, T)) 4+ 2Cov(r(t, T), s, (¢, T)) . (1V.2.32)

We now explain how to decompose the total interest rate VaR into LIBOR VaR and credit
spread VaR, for a portfolio of a given credit rating, in the context of the normal linear model.
Dropping the time and maturity dependence for simplicity, we denote the set of interest rates
of credit rating q with different maturities by the vector r, the LIBOR rates of these maturities
by r and the corresponding credit spreads by s,.

We account for the correlations between interest rates using the yield curve covariance
matrix, and now we partition this matrix into LIBOR and spread covariance matrices, and
their cross-covariance matrix, as

o[ s
V() =2= (%s Q ) (IV.2.33)
If we want to make the risk horizon of the matrix explicit, then the covariance matrix
corresponding to h-day changes in interest rates is written as

V(r,) =2, = (gt”‘ 9““) . (1V.2.34)

hRS th
Suppose there are n LIBOR rate and » credit spread risk factors at the same maturities. The
four matrices in the partition on the right-hand side of (1V.2.34) are then n x n matrices and
© has dimension 2n x 2n. Now, what is the 2n x 1 risk factor sensitivity vector? The PV01
sensitivity to the change in interest rate of a given maturity is the change in the present value
of the cash flow for a one basis point fall in that interest rate. But since the interest rate is

the sum of the LIBOR rate and the credit spread, this one basis point fall could be in either the
LIBOR rate or the credit spread of that maturity. Thus, assuming the vertices of the risk factor
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mapping are the same for LIBOR and credit spreads, the PV01 is same for both LIBOR and
the credit spread. In other words, with the decomposition (1V.2.34) of the covariance matrix,
the corresponding PVO0L1 is the vector with the PVV01s at the n vertices in the LIBOR rate risk
factor set, and then these are repeated for the vertices in the credit spread risk factor set. Thus
0= (07, 0;)" where in this case

0, =0 = (PVOL,, ..., PVOL,). (1V.2.35)

But due to the limitations of historical data, it usually the case that the maturities at which
credit spreads are recorded are a proper subset of the maturities in the LIBOR rate risk factor
set.’® So in general, 0, £ 65 because they do not even have the same dimension.

Now the total VaR due to LIBOR and spread is given by the usual formula,

Total systematic VaR, , = @ (1 — a)y/0'R2,6.

Setting 0, = 0 gives the stand-alone credit spread VaR, and setting 65 = O gives the stand-alone
LIBOR VaR. The marginal contributions to VaR and the incremental VaR of a new trade are
all calculated using the gradient vector in the usual way.

The extension of this decomposition to a portfolio containing exposures with several credit
ratings is straightforward. For example, with two credit ratings in the portfolio we decompose
the covariance matrix thus:

Qir Qiis, Qis,
Q, = Sz,hRsl Qh& SthLSZ . (|V-2-36)
Qies, Rhs,s, s,

and the PVO1 vector is written as the column vector
0= (6, 05,,65,)’,

where 0, is the PV01 of the combined exposure to the two different credit ratings, 65, is the
PVO01 of the exposure to the first credit rating, and 0, is the PVO1 of the exposure to the
second credit rating.

The following example illustrates the decomposition of interest rate VaR for a portfolio
with exposures to a single credit rating.

EXAMPLE IV.2.6: SPREAD AND LIBOR COMPONENTS OF NORMAL LINEAR VAR

A portfolio of A-rated corporate bonds and swaps has its cash flows mapped to vertices at
1 year, 2 years, 3 years, 4 years and 5 years. The volatilities of the LIBOR rates (in basis points
per annum) and PVO1 vector of the portfolio are shown in Table 1V.2.5. The correlations of
the LIBOR rates are shown in Table IV.2.6.

The 1-year and 5-year A-rated credit spreads are, like the LIBOR parameters, assumed to
have been estimated from a historical sample. Suppose the 1-year spread has volatility 80

19 1n this case, there are three ways to approach the problem of disaggregating VaR into LIBOR and credit spread components. We
can use a different number of vertices for the LIBOR and credit spread mappings, in other words the credit spread and LIBOR risk
factors result from cash-flow mappings to vertices at different maturities, and consequently the PVO1 vector for credit spreads will be
different from the PVO1 vector for LIBOR. Alternatively, we can interpolate the volatilities and correlation of the credit spreads to
obtain volatilities and correlations at the same maturities for credit spreads as used for LIBOR, or we can reduce the LIBOR rate risk
factors to be at the same maturities as the credit spread risk factors.
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Table 1V.25 PVO01 of cash flows and volatilities of LIBOR rates

Maturity (years) 1 2 3 4 5
PVO01 ($) 750 1000 500 250 500
\olatility (bps) 100 95 85 75 60

Table 1V.2.6 Correlations between LIBOR rates

Correlations LIBOR
lyr 2yr 3yr 4yr 5yr
LIBOR lyr 1 0.95 0.92 0.9 0.88
2yr 0.95 1 0.97 0.65 0.75
3yr 0.92 0.97 1 0.6 0.79
4yr 0.9 0.65 0.6 1 0.98

syr 08 075 079 098 1

basis points per annum and the 5-year spread has volatility 70 basis points per annum, and
their correlation is 0.9. Suppose the cross correlations between these credit spreads and the
LIBOR rates of different maturities are as shown in Table 1V.2.7. Estimate the 1% 10-day total
interest rate VVaR and decompose the total VaR into the VaR due to LIBOR rate uncertainty,
and the VaR due to credit spread uncertainty. Then estimate the marginal VaR of the LIBOR
and credit spread components.

Table IV.2.7  Cross correlations between credit spreads and LIBOR rates

Correlations LIBOR
lyr 2yr 3yr 4yr Syr
Credit spread lyr —-0.25 -0.20 —0.18 —0.15 -0.10

Syr —0.20 —0.21 —0.23 —0.24 —0.25

SoLuTION  We shall employ a simple linear interpolation between variances and between

squared correlations to fill in the elements of the matrices £ and gs.2° The full matrix € is

a 10 x 10 matrix, and the volatilities and correlations in this matrix are shown in Table 1V.2.8.
The PVO01 vector is

0" = (6%, 05),
with
= = 0 = (750, 1000, 500, 250, 500)
This yields the 1% annual total risk factor VaR:

®7(0.99)v 'R0 = 2.32635 x $296,363 = $689,443.

20 inear interpolation between correlations would lead to a singular correlation matrix. The interpolation method is ad hoc, hence a
(small) model risk is introduced with this approach.
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Table IV.2.8 \olatilities and correlations of LIBOR and credit spreads

Volatilities LIBOR Credit spreads
Maturity (years) 1 2 3 4 5 1 2 3 4 5
PVO01 ($) 750 1000 500 250 500 750 1000 500 250 500
Volatility (bps) 100 95 85 75 60 80 7762 7517 7263 70
Correlations 1 2 3 4 5 1 2 3 4 5
1 1 0.95 0.92 0.9 0.88 -0.25 —0.2385 —0.2264 —0.2136 —0.2
2 0.95 1 0.97 0.65 0.75 —0.2000 —0.2025 —0.2051 —0.2075 —0.2100
LIBOR 3 0.92 0.97 1 0.6 0.79 —0.1800 —0.1937 —0.2065 —0.2186 —0.2300
4 0.9 0.65 0.6 1 0.98 —0.1500 —0.1768 —0.2001 —0.2210 —0.2400
5 0.88 0.75 0.79 0.98 1 -0.1 —0.1521 —0.1904 —0.2222 —0.25
1 —0.25 -0.20 -0.18 -0.15 -0.10 1 0.9760 0.9513 0.9260 0.9
Credit 2 —0.2385 —0.2025 —0.1937 —0.1768 —0.1521 0.9760 1 0.9760 0.9513 0.9260
spreads 3 —0.2264 —0.2051 —0.2065 —0.2001 —0.1904 0.9513  0.9760 1 0.9760 0.9513
P 4 —0.2136 —0.2075 —0.2186 —0.2210 —0.2222 0.9260  0.9513 0.9760 1 0.9760
5 —0.20 -021 -0.23 -0.24 -0.25 0.9 0.9260 0.9513 0.9760 1

Multiplying this by +/10/250 = 0.2 gives the 1% 10-day total risk factor VaR as
$137,889.

For the stand-alone LIBOR VaR we simply use ; and 0 in place of £ and 6 (and sim-
ilarly, we use ¢ and 6 for the credit spread VaR). The results, which are calculated in the
spreadsheet for this example, are:

1%10-day LIBOR VaR =$115,943,
1%10-day credit spread VaR = $104,301.

So the sum of the stand-alone VaRs is $220,224, which is much larger than the total VaR, due
to the negative correlation between interest rates and credit spreads.

As usual, the marginal VaRs sum to the total VaR. To calculate these we first compute the
annual gradient vector using the usual formula. This gives

g(0r) = (152.85, 145.87, 128.76, 94.34, 85.46)’, g(#s) = (105.88, 103.16, 98.38,92.68, 86.61)".

The 1% annual total VaR is 6,9(0:) + 0:0(0s) and this has already been calculated as
$689,443. The two 1% annual marginal VaRs are

1% annual marginal LIBOR VaR = 6;g(0;) = $391,211
=1% 10-day marginal LIBOR VaR =$391,211 x 0.2 =$78,242

and

1% annual marginal credit VaR = 65g(6s) = $298,233
=1% 10-day marginal credit VaR = $298,233 x 0.2 = $59,647.

The sum of the marginal VaRs is identical to the total VaR.
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V.24 CASE STUDY: PC VALUE AT RISK OF A UK FIXED
INCOME PORTFOLIO

The above example employed a cash-flow mapping to just five vertices, and included just one
credit rating. But in practice there could be 50 or 60 vertices, and several credit ratings. With
n vertices and k credit ratings there will be kn risk factors, so the risk factor correlation matrix
could have a very large dimension indeed. However, the risk factors are very highly correlated
and for this reason lend themselves to dimension reduction through the use of principal compo-
nent analysis (PCA).2! This section demonstrates how to apply PCA to reduce the dimension
of the risk factor space when estimating the VaR of interest rate sensitive portfolios so that
the new risk factors (i.e. the principal components) are uncorrelated variables that capture the
most commonly experienced moves in interest rates.

We consider a portfolio of UK bonds (and/or swaps) on 31 December 2007. We ignore the
credit spread risk and suppose that its cash flows have been mapped to the spot market rates at
intervals of one month using the volatility, present value and duration invariant cash-flow map
described in Section 111.5.3. Then the PV01 of the mapped cash flow is computed as explained
in Section 111.1.8 and the resulting PVVO1 vector is depicted in Figure 1V.2.2.

é“ I LI LT R |

Figure 1V.2.2 PVO01 vector of a UK fixed income portfolio (£000)

Given the size of the PVO01 sensitivities shown in Figure 1V.2.2, with several exceeding
+£1000, there must be cash flows of ££5 million or more at several maturities.”? Hence,
the portfolio could contain long positions on bonds with face value of around £1 billion, and
short positions on bonds with face value of around £1 billion or more. The present value of
the portfolio may be much less than £1 billion of course, because it has a rough balance of
positive and negative cash flows.

2LPCA is introduced in Section 1.2.6 and fully discussed with numerous empirical examples in Chapter 11.2.

22 For a quick ‘rule of thumb’, a cash flow of 1 million at N years has a PV01 of a bit less than N x T x 100. So, for instance, the PV01
of £3000 at 4 years corresponds to a cash flow of approximately 3000/400 =£7.5 million. But this is a very crude approximation. See
Section 1V.2.3.2 for a more precise approximation to the PV01.
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IV.2.4.1 Calculating the Volatility and VaR of the Portfolio

This section contains two examples, the first showing how to use the cash-flow map and the
second showing how to compute the volatility and VaR of the portfolio.

EXAMPLE IV.2.7: APPLYING A CASH-FLOW MAP TO INTEREST RATE SCENARIOS

Consider the portfolio of UK bonds and swaps with P01 vector 6 shown in Figure 1V.2.2.
Find an approximation to the change in the portfolio’s value given that UK interest rates
change as follows:

(@) The UK vyield curve moves upward with a parallel shift of 10 basis points at all
maturities.

(b) Thereisatiltinthe UK yield curve where the 1-month rate increases by 35 basis points,
the 2-month rate by 34 basis points, the 3-month rate by 33 basis points and so on up
to the 59-month rate decreasing by 23 basis points and the 60-month rate decreasing by
24 basis points.

SoLUTION In the spreadsheet for this example we apply the relationship (1V.1.25), i.e.
APV =~ —@'Ar, (IvV.2.37)

with the basis point changes in interest rates specified in (a) and (b) above. Hence:

(@ Ar=(10, 10, ..., 10) gives APV =£9518; and
(b) Ar=(35, 34, ..., —23, —24) gives APV =£396,478.

Since the portfolio has a balance of long and short exposures, its present value does not
change much when the yield curve shifts parallel, as is evident in case (a) above. But the port-
folio is much more exposed to a change in slope of the yield curve; Figure 1V.2.2 shows that
the portfolio is predominately short in bonds with maturities up to 3 years but its positions
on bonds with maturities between 3 and 5 years are predominately long. Hence, the portfolio
will increase in value if the yield curve shifts up at the short end and down at the long end.
Indeed, under the scenario for interest rates in (b) above, the portfolio would make a profit of
£396,478.

In the next three examples, all of which are contained in the case study workbook, we use
an equally weighted covariance matrix €2, of the absolute daily changes in UK interest rates
based on data from 2 January 2007 until 31 December 2007.2 The covariance matrix has
dimension 60 x 60, so we do not show it here, although it can be seen in the Excel spreadsheet
accompanying the following example.

EXAMPLE 1V.2.8: VAR oF UK FIXED INCOME PORTFOLIO

Use the 1-day covariance matrix 2, given in the spreadsheet to find the volatility of the dis-
counted P&L of the portfolio with PVO1 vector 6 shown in Figure 1V.2.2. Assuming that
each interest rate change is i.i.d. normally distributed, calculate the 1% 10-day VaR on 31
December 2007.

23 The data can be downloaded from the Bank of England website, http://www.bankofengland.co.uk/statistics/yieldcurve/index.htm.
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SOLUTION W first obtain the 1-day variance of the portfolio P&L as
Daily P&L variance = 0'Q2,0 =575.945.

But 6 was given in units of £1000. Hence to convert this figure to the P&L volatility we must
take the square root, multiply this by the square root of 250 (assuming there are 250 risk days
per year) and then also multiply by £1000. The result is

P&L volatility =£379,455.

Hence,

1% 10-day VaR = 2.32634 x 379,455 x 0.2 =£176,549.

IV.2.4.2 Combining Cash-Flow Mapping with PCA

Principal component analysis is a powerful tool for representing any highly correlated system.
In Chapter I1.2 we explained how to apply PCA to a set of interest rates, and in Section 11.2.3
we used the UK bonds that we are considering in this case study as an example. In this
section we shall combine a principal component representation with the PVVO1 vector shown
in Figure 1V.2.2. In this way we obtain a set of sensitivities to a new set of interest rate risk
factors: the first three principal components of the UK yield curve.

The general expression for a principal component representation of the changes in interest
rates Ar, at time ¢ is

A, AW, (1V.2.38)

where the factor weights matrix W* is the n x k matrix whose columns are the first . eigenvec-
tors of the covariance matrix of absolute changes in returns; n is the number of risk factors,
i.e. the dimension of the covariance matrix; and p* is the k x 1 column vector of the first
principal components at time ¢.

We use (I1V.2.38) to derive the representation of our UK bond portfolio P&L in terms
of sensitivities 3 to just k orthogonal risk factors (i.e. the principal components) instead of
sensitivities to n highly correlated risk factors. Combining (1V.2.37) with (1V.2.38) gives

APV, ~@'p;, where B=-W"6. (1V.2.39)

Hence, the new factor sensitivity vector is the k x 1 vector of constants obtained by taking
(minus) the product of the transpose of the component factor weights matrix, W*, which has
dimension k x n, and the n x 1 PVO1 vector 6. This way the number of risk factors has been
reduced from n to k.

Now the interest rate VaR based on the principal component risk factors is

PC VaR,,=® (1 —a)/B'DB (1V.2.40)

or, equivalently,

PC VaR,, =@ (1 —a)vVO'W*'DW"9, (Iv.2.41)
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where D =diag(\y, ..., \,) is the diagonal matrix of the first . eigenvalues of the h-day risk
factor covariance matrix €2,. Note that if n =F (i.e. we only make the risk factors uncorrelated
and do not reduce the number of risk factors) then W* =W, i.e. the matrix of all n eigenvec-
tors, and WDW' = ,. So unless we use PCA to reduce dimensions, the PC VaR estimate is
identical to the ordinary interest rate VaR estimate.

The approximation (1V.2.39) of portfolio P&L is now based on new risk factors, i.e. the first
k principal components. These are uncorrelated, whereas interest rate risk factors themselves
are highly correlated. Moreover, the new sensitivity vector 3 is just a k x 1 vector, whereas
the old PVVO1 sensitivity vector was an n x 1 vector, where n is much larger than k. In practice
it is typical for n to be around 50 or 60 and for k to be only 3 or 4. So there is a huge reduction
in dimension from basing VaR measurement on (1V.2.39) rather than using the ordinary risk
factor VaR. Yet, the loss of accuracy from using PC VaR as an approximation to the interest
rate VaR is negligible, particularly when it is set in the context of all the other sources of
model risk in the normal linear VaR model.

The next example shows how to derive the quantities in (1V.2.40) and applies this formula
to measure the PC VaR of our UK bond portfolio.

EXAMPLE 1V.2.9: USING PRINCIPAL COMPONENTS AS RISK FACTORS

Suppose that the cash-flow representation of the bond portfolio whose PV01 vector is shown
in Figure 1V.2.2 was taken on 31 December 2007. Also suppose that we base our daily interest
rate covariance matrix £, on daily changes in the UK spot curve for maturities measured at
monthly intervals up to 5 years, using the data period from 2 January to 31 December 2007.%
Find a principal component representation based on €2, with three principal components, and
specify the diagonal matrix D that has their standard deviations along its diagonal. Then use
this principal component representation to calculate the UK bond portfolio’s sensitivities to
the three principal component risk factors.

SOLUTION A PCA on the 60 x 60 covariance matrix is given in the Excel workbook for
this case study. The first three eigenvalues are shown in Table 1V.2.9, and we see that together
the first three components explain over 99% of the total variation in UK interest rates over the
past year. The first component alone accounts for 93.41% of the variation, so the rates were
extremely highly correlated along the yield curve during 2007.

Table IV.2.9 Eigenvalues of covariance matrix of UK spot rates — short end

1 2 3
Eigenvalues 856.82 45.30 9.15
Percentage variation explained 93.41% 4.94% 1.00%
Cumulative variation explained 93.41% 98.35% 99.35%

The first three eigenvectors belonging to these eigenvalues are plotted, as a function of
the maturity of the interest rate, in Figure 1V.2.3. These have the usual ‘trend-tilt—curvature’

24 The Bank of England provides historical data on yield curves and many other financial variables such as exchange rates and option
implied volatilities on http://www.bankofengland.co.uk/statistics/yieldcurve/index.htm. We have assumed the portfolio contains gilts
and have therefore used the government liability curve in this case study, but the commercial liability curve is also available for
download.
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Figure IV.2.3 Eigenvectors of covariance matrix of UK spot rates — short end

interpretation that we are accustomed to when PCA is applied to a highly correlated yield
curve, such as the Bank of England liability curves. However, as is usual for money market
rates which are frequently affected by manipulation from the central bank, the very short
term rates are less volatile than others, giving the eigenvectors a characteristic ‘dip’ at the
short end. For instance, if the first principal component increases but the other components
are unchanged, then the 1-month rate will hardly change, but the interest rates at maturities
greater than 2 years will all change by a similar amount, i.e. by approximately 15% of the
change in the first principal component.

The diagonal matrix of standard deviations of the principal components has elements equal
to the square root of the eigenvalues in Table 1V.2.9, i.e.

D = diag(v/856.82, v/45.30, /9.15). (1V.2.42)

Since by definition the first principal component has much the largest standard deviation, this
would be the main determinant of the VaR if the sensitivity to each PC were the same. We
estimate the PC sensitivity vector 3 using (1V.2.39), i.e. multiplying the matrix W* whose
columns contain the first three eigenvectors by the 60 x 1 vector of PV01 sensitivities shown
in Figure 1V.2.2. In this way we obtain the new 3 x 1 sensitivity vector 3 for the principal
component factors shown in Table 1V.2.10. In fact, the sensitivity to the first PC is the smallest
of the three.

Table 1V.2.10 Net sensitivities on PC risk factors

Component P1 P2 P3

Beta £428 —£2975 £1041

Figure 1V.2.4 shows the first principal component, which is obtained from the first eigen-
vector. Since it is based on a covariance matrix that is expressed in basis point terms, the
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Figure IV.2.4 First principal component of the UK spot rates — short end

principal component is also measured in basis points. The coefficient of £428 on P1 means that
a 100 basis point increase in the first principal component leads, approximately, to a £42,800
increase in the present value of the portfolio. From the first eigenvector in Figure 1V.2.3 we
see that a 100 basis point increase in the first component would be approximately equivalent
to a yield curve movement that is up 15 basis points at maturities over 2 years, but up much
less at shorter maturities. Our portfolio has some very large positive cash flows at maturities
over 2 years so an upward shift of 15 basis points at the longer maturities, with less movement
at the short end, will induce a much larger gain in the portfolio than a parallel shift of 15
basis points. The eigenvalues given in Table 1V.2.1 tell us that the first principal component
captured a very common type of movement in the yield curve. In fact, it accounts for 93.41%
of the variation experienced in the UK government yield curve during 2007. By contrast, the
exact parallel shift scenario that we used in Example IV.2.7 is not nearly as common.

EXAMPLE IV.2.10: COMPUTING THE PC VAR

Estimate the VaR of the portfolio based on the mapping to the first three principal compo-
nents, i.e. based on (1V.2.40), and compare this with the full evaluation interest rate VaR from
Example 1V.2.8.

SOLUTION The spreadsheet for this example first gives the result of estimating the P&L
volatility using the 3 vector shown in Table 1V.2.3 and the diagonal covariance matrix of the
principal components given by (1V.2.42). This gives

V/B'DB =£377,109.

Then we compute the 1% 10-day VaR from this volatility, by multiplying it by the critical
value ®~%0.99) = 2.32635 and by the scaling factor ,/10/250 = 0.2, giving the 1% 10-day
PC VaR as £175,457, compared with £176,549 under full evaluation. The PC approximation
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leads to only a very small error in VaR (of about 0.6%). The error is a result of taking only three
principal components, but this ignores only a small fraction of the variation in the risk factors.

IV.2.4.3 Advantagesof Using PC Factorsfor Interest Rate VaR

In addition to the advantage of dimension reduction, the principal component risk factors
make it much easier to apply meaningful scenarios to interest rates. By changing just the first
principal component, for instance, we obtain the change in our portfolio’s value corresponding
to the most likely shift in the yield curve, given the historical data used in the PCA. This is not
usually a parallel shift in all yields, but it is approximately parallel at longer maturities, so for
a portfolio with a high duration this scenario gives a portfolio sensitivity that is similar to that
obtained via the standard duration approximation. But, since interest rates do not normally
shift exactly parallel all the time, using a change in the first principal component is more
representative of historical movements in yields than a parallel shift.

Moreover, the representation (1V.2.39) provides a more detailed analysis of our portfolio’s
responses than duration—convexity analysis. In addition to a roughly parallel shift, by changing
the second principal component we can find the change in portfolio value corresponding to a
specific tilt in the yield curve, i.e. the tilt that is most likely to occur, based on the historical
yield curve movements. On changing the third principal component we obtain our portfolio’s
response to a specific (most likely) change in the yield curve convexity, and so on if more than
three principal components are used in (1V.2.39).

Covariance matrix scenarios, which form the basis of many stress tests, are also very easy to
implement using PCA. For instance, suppose the original cash-flow mapping of the portfolio
is to 50 different maturities of interest rates. Then their covariance matrix is very large, i.e.
50 x 50. Performing stress tests on this matrix will not be a simple task. However, when using
the principal component representation (1V.2.39) of the portfolio’s P&L, stress tests need only
be performed on a k x k covariance matrix, where typically k = 3. PC-based stress tests also
take on a meaningful interpretation, i.e. stressing the most common changes in trend, tilt and
curvature of interest rates.

Finally, by choosing only the first few components in the representation we have cut down
the “noise’ in the data that we would prefer not to contaminate our risk measures. In highly
correlated yield movements there is very little ‘noise’ and for this reason a three-component
representation captures over 99% of the variations in our example. But in less highly corre-
lated yields, much of the idiosyncratic variation in yields may not be useful for risk analysis,
especially over the longer term. We saw a small reduction in the PC VaR estimate, compared
with the usual VaR estimate, and this is to be expected if some of the variation is ignored. But
with the yield curves in major currencies this reduction will be very small indeed. However,
other systems such as implied volatilities or equities have much more noise and in this case
the use of principal components could reduce VaR more significantly.

V.25 NORMAL LINEAR VALUE AT RISK
FOR STOCK PORTFOLIOS

Starting with the simplest case of just a few cash stock positions, we shall consider many linear
equity portfolios in this section, including cash and futures positions with and without foreign
exchange risk. The systematic parametric linear VaR estimates of an equity portfolio are based
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on forecasts of expected returns and standard deviations of returns, taken in the context of
an equity factor model. Hence, this section draws on the material presented in Chapter 11.1,
where we covered the different types of factor models that are used for mapping equity
portfolios.

IV.2.5.1 Cash Positionson a Few Stocks

In Section 1.2.4 we showed how to compute the volatility of portfolio P&L, when the portfolio
is characterized by its holdings in each of n stocks and we are given the covariance matrix of
the stocks returns. Denote the n x 1 vector of portfolio weights on each stock by w, where each
element of w is the holding in that stock divided by the total amount invested, i.e. the current
price of the portfolio P. Denote the n x n stock returns annual covariance matrix by V.2° Then
the portfolio return volatility is o = ~/W'Vw and the P&L volatility is Po.

In Section 1V.2.2 we showed how to convert a portfolio volatility into a 100a% h-day normal
linear VaR estimate, for an arbitrary portfolio, under the assumption that the risk factor returns
are multivariate normal and i.i.d. with zero expected excess returns. We ignore the effect on
VaR of an expected return that is different from the discount rate, since this is very small
unless h is very large. Then, with h measured in days and assuming there are 250 trading days
per year, we have

VaR,, = ® (1 —a) o,/h /250 P, (1V.2.43)

More generally, and particularly when estimating the VaR for long term investments in
equity funds, we may wish to include the possibility that the portfolio grows at a rate different
from the discount rate over a long risk horizon. In this case we would include the drift
adjustment to the VaR, as explained in Sections 1V.1.5.1 and 1V.2.2.

In the general case, to apply the normal linear VaR formula (1V.2.43) we need to forecast,
over a risk horizon of h days, the standard deviation and mean of the portfolio returns. Let

e w denote the current vector of portfolio weights,
e F(x,) be the n x 1 vector of the stocks’ expected excess h-day returns, and
e 'V, be the h-day covariance matrix of stock returns.

Then the 100a% h-day normal linear VaR of the portfolio, under the assumption that the risk
factor returns are multivariate normal and i.i.d. and expressed as a percentage of the portfolio
value P is

VaR, , = & (1 — a)y/WV,W—WE(X,). (1V.2.44)

The application of this formula is illustrated in the following example.

EXAMPLE IV.2.11: VAR FOR CASH EQUITY POSITIONS

Calculate the 1% 10-day parametric linear VaR for a portfolio that has the characteristics
defined in Table 1V.2.11, discounting using a risk free rate of 5%. How much is the VaR
reduced by the mean adjustment? Repeat your calculations for a risk horizon of 1 year.

25 Recall that we use the notation V for an asset covariance matrix and  for a risk factor covariance matrix.
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Table IV.2.11  Stock portfolio characteristics

Position ~ Volatility Expected return Correlation
Stock 1 €4m 20% 10% Stock 1-Stock 2~ 0.8
Stock2 ~ —€bm 10% 2% Stock 1-Stock 3~ 0.5
Stock 3 €1m 15% 5% Stock 3-Stock2 0.3

SOLUTION The calculations are performed in the accompanying spreadsheet, using the
10-day expected returns and the covariance matrix of 10-day returns displayed in
Table IV.2.12. This gives an expected P&L of €14,000, a P&L standard deviation of €117,898
and a 1% 10-day VaR of €259,765. But without the mean adjustment, i.e. without the
second term on the right-hand side of (1V.2.44), the 1% 10-day VaR is €273,738. Hence,
the mean adjustment reduces the VaR by about 5%. Over a 1-year risk horizon the 1% VaR is
€1,384,864 without the mean adjustment and €1,051,530 with the mean adjustment. Hence,
over 1 year the drift adjustment is very important, as it leads to a 24% reduction in VaR.

Table IV.2.12 Characteristics of 10-day returns

10-day return 10-day covariance matrix
Stock 1 0.004 0.0016 0.00064 0.0006
Stock 2 0.0008 0.00064 0.0004 0.00018
Stock 3 0.002 0.0006 0.00018 0.0009

Another way of looking at the results in the above example is to use Table 1V.2.1, which tells
us that the 1% 10-day VaR is very approximately about 10% of the portfolio value, depending
of course on the portfolio volatility. So very approximately the VaR is about €100,000 per
€1 million invested. In the above example the discount factor over 10 days corresponding
to a 5% discount rate is 0.99805, and its effect is therefore about €(1 — 0.99805) million,
i.e. approximately €195 per €1 million invested. This is negligible compared with the VaR.
However, over a 1-year horizon the VaR is about 50% of the portfolio value, again depending
on the portfolio volatility. And the discount factor over 1 year corresponding to a 5% discount
rate is 0.95238. So its effect is about (1 — 0.95238) million euros, i.e. approximately €47,620
per €1 million invested, which is not insignificant compared with the VaR.

For simplicity, we shall often ignore discounting when VaR is measured over a short horizon
such as 10 days, just as we shall often ignore the mean return. It is only when VaR is measured
over a risk horizon of several weeks or months that the errors induced by ignoring the effects
of discounting and of a non-zero discounted mean return really affect the accuracy of the VaR
estimate. However, and we have stressed this before, such long term VaR estimates are only
meaningful to investors who hold positions constant over a long term risk horizon without
liquidating or hedging when market conditions are adverse.

IV.25.2 Systematic and Specific VaR for Domestic Stock Portfolios

In Section 1V.1.7.1 we introduced, in general terms, the disaggregation of total VaR into sys-
tematic and specific components. Now we use the normal linear VVaR model to provide some
numerical examples that illustrate this decomposition for stock portfolios.
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Portfolios that contain a large number of equities in the same currency are mapped to their
risk factors via a factor model. The set of risk factors may include broad stock market indices,
style indices such as value and growth indices of different capitalizations, or statistical factors
such as those obtained using PCA. When portfolio returns are represented by a factor model,
the systematic parametric linear VaR can be calculated using (1V.2.14) where:

o 0 is the vector of stock betas with respect to each risk factor;*
e E(x,) is the vector of the risk factors’ expected h-day returns; and
e Q, is the h-day covariance matrix of the risk factor returns.

For risk assessment (rather than returns forecasting, which is another use of the factor model)
the portfolio betas should be as risk sensitive as possible. Hence an exponentially weighted
moving average (EWMA) on recent daily data maybe preferred to ordinary least squares
(OLS) on weekly or monthly data over a long period. Note that if the betas are estimated
using EWMASs, a time series of beta estimates is obtained over the sample period but it is only
the last (today’s) forecast that we use in the calculation.

EXAMPLE I1V.2.12: SYSTEMATIC VAR BASED ON AN EQUITY FACTOR MODEL

A linear model with two risk factors indicates that a stock portfolio has net betas of 0.8 and
1.2 with respect to these factors. The factors have volatility 15% and 20% respectively, and a
correlation of —0.5. If the portfolio is expected to return the risk free rate over the next month,
calculate the 5% 1-month systematic VaR on an investment of $20 million in the portfolio.

SOLUTION  The risk factors’ monthly covariance matrix is

o 0.00188 —0.0013
~\—0.0013 0.00333)"

so the portfolio variance due to the risk factors is

on 0.00188 —0.0013 (0.8
pes=(08 12) (—0.0013 0.00333> (1.2

Hence the monthly standard deviation is +/0.0036 = 0.06 and the systematic VaR is therefore

) =0.0036.

1.64485 x 0.06 x $20m =$1,973,824.

In Section 11.1.2.5 we decomposed the total volatility of a stock portfolio into two portions,
that due to the risk factors (the systematic risk) and that due to the idiosyncratic volatility
(the specific or residual risk). Since the parametric linear VaR is a linear transformation of
the portfolio volatility, this decomposition carries over into a decomposition of total VaR into
systematic and specific VaR components.

26 | we use net value betas here, i.e. the net percentage betas multiplied by the nominal value of the portfolio, then VaR is estimated
in value terms; otherwise we estimate VaR as a percentage of the portfolio value.
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The relationship between the total VaR, systematic VaR and specific VaR is easily
explained using a simple factor model with only one risk factor, i.e. the market factor, as in
Section 11.1.2.5. Write the model as

Y, =OL+BXt + €,
where Y is the return on the portfolio and X is the return on the market. Taking variances gives
V(Y,) =B V(X,) + V(e,) + 2BCov(X,. &), (1V.2.45)

or, in parameter notation,
2
o’ =B3%0% + o’ + 20800,

where g is the correlation between the market and the residual returns. This may be written in
the alternative form

oy = (Box +0,)* = 2(1 - 0)Box. (1V.2.46)

The market volatility, i.e. the volatility due to the market risk factor, is 3oy, so (1V.2.46)
may be expressed in words as

[total volatility]® = [market volatility + residual volatility]?

— 2(1 — g)[market volatility] x [residual volatility].

But in the parametric linear VaR model, the VaR behaves just like volatility, assuming we
ignore any adjustment for a non-zero discounted mean return. Hence, an expression similar to
(1V.2.46) also holds with VaR in place of volatility:

[total VaR]? = [systematic VaR + specific VaR]?
—2(1 — g)[systematic VaR] x [specific VaR]. (IV.2.47)

Hence, the total VaR is equal to the sum of the systematic VVaR and the specific VaR if and only
if o, the correlation between the return explained by the risk factors and the residual return,
is equal to 1. But, on the contrary, it is usually assumed that the factor model explains the
portfolio return so well that ¢ = 0. Under this assumption the total VaR is the square root of
the sum of the squared systematic VVaR and the squared specific VaR.

In the more general case, when g is not 0 but less than 1, the total VaR will be less than the
sum of the systematic VaR and the specific VaR. This property, which is an example of the sub-
additivity property of parametric linear VaR models, is a necessary property for the risk metric
to be coherent. It implies that the risk of investing in a portfolio is no greater than the risk
resulting from an equivalent sized investment in any single asset of that portfolio. It is related
to the portfolio diversification effect that was introduced and discussed in Section 1.6.3.1.
There we showed that the volatility of a portfolio is never greater than the volatility of any
of its constituent assets, and that the volatility of a fully funded long-only portfolio decreases
with the asset returns correlations. Hence, to reduce risk (as measured by volatility), investors
have the incentive to hold a diversified portfolio, i.e. a portfolio with investments distributed
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over many assets that have as low a correlation as possible.?” The sub-additivity property of
parametric linear VaR amounts to exactly the same thing as portfolio diversification, but now
the portfolio risk is measured by its systematic and specific VaR and not its volatility.?

1V.25.3 Empirical Estimation of Specific VaR

The normal linear specific risk of an equity portfolio can be calculated in three different ways:

1. Save a time series of residuals from the factor model, and calculate the normal linear
specific VaR directly from the residual variance.

2. First calculate the normal linear total VaR using the variance of the portfolio return.?
Then calculate the systematic VaR using ®~%1 — a),/3'203 and the specific VaR using
(IV.2.47), under the assumption that ¢ =0.

3. Use a standardized rule, such as setting specific risk = 8% of portfolio value (see
Section 1V.8.2.5).

An advanced risk assessment system should have a database of historical prices on all stocks
and risk factors that enables the more precise estimation of specific VaR using method 1.
Based on these data, the factor betas and the risk factor covariance matrix, and hence also the
systematic VaR and (from the factor model residuals) the specific VaR, may all be estimated
in-house. Holding the current portfolio weights constant, historical data on stock returns may
be used to construct a current weighted returns series for the portfolio.* Then the total VaR
may be estimated directly from the current weighted returns.®* An empirical illustration, for a
portfolio of stocks in the S&P 100 index, is provided in the next subsection.

However, method 2 is often used, even though it is based on the assumption that the specific
returns and the systematic returns are uncorrelated, which may not be warranted. This would
only be the case if the factor model were doing an excellent job of explaining the stock’s
returns, and the portfolio is well diversified, but often this is not the case.

EXAMPLE 1V.2.13: DISAGGREGATION OF VAR INTO SYSTEMATIC VAR
AND SPECIFIC VAR

Suppose the volatility of the portfolio returns in Example 1V.2.12 is 25%. Find the 1% 10-day
total VaR and the 1% 10-day specific VaR using the normal linear model, based on method 2
above.

SOLUTION  Since the portfolio volatility is 25%,
Total VaR = 1.64485 x 0.25 x (1/+/12) x $20m = $2,374,142.

The systematic VaR was found, in Example 1V.2.12, to be $1,973,824. Hence, assuming a zero
correlation between the residual and the market returns, the specific VaR may be calculated

27 Alternatively, the diversification could be achieved with long-short positions on highly correlated assets.

28 However, it is important to note that only the parametric linear VaR model always has the sub-additivity property. When VaR is
estimated using historical or Monte Carlo simulation, VaR need not be sub-additive. See Section 1V.1.8.3 for further discussion and
Example 1V.1.11 for a numerical illustration.

29 Also use the mean excess returns, if they are significantly different from zero and the risk horizon is longer than a few months.

30 |f the portfolio is long-short we keep the holding in each stock constant, rather than the portfolio weight, and use absolute rather
than relative returns.

31 This can be a time consuming and difficult exercise, e.g. when holding new issues.
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as the square root of the difference between the square of the total VaR and the square of the
systematic VaR, i.e.:

Specific VaR = \/2,374,1422 —1,973,824” = $1,319,305.

Which of the three methods is used to estimate specific risk depends very much on the data
available. If the risk factor betas are obtained directly from a data provider then method 1
cannot be used. If the risk factor returns covariance matrix € is also obtained from a data
provider, or provided in-house, then we can calculate the systematic VaR but not the total
VaR, and in that case a standardized rule must be applied to estimate the specific risk.

IV.25.4 EWMA Estimates of Specific VaR

When ordinary least squares is used to estimate both the factor model betas and the covari-
ance matrix, on an identical sample, methods 1 and 2 above for estimating specific VaR will
produce identical results.® However, OLS is not necessarily the best method to use. Indeed,
OLS estimates merely represent an average value over the time period covered by the sample
and will not reflect current market conditions. Risk managers often prefer to use more risk
sensitive estimates of factor model betas and the covariance matrix, such as those obtained
using the exponentially weighted moving average methodology. This approach for estimating
risk sensitive betas was introduced and illustrated in Section 11.1.2.3, and full details of the
EWMA methodology were given in Section 11.3.8.

We now show that when EWMA is applied to estimate portfolio betas we should use method
1 rather than method 2 (described in the previous subsection) to obtain the specific VaR. Using
EWMA estimates instead of OLS, these two methods no longer yield identical results; in fact,
method 2 could produce negative values for the specific VaR because the assumption that o =0
is not valid.

For simplicity we suppose the portfolio with returns Y has only one risk factor, with
returns X. Then the EWMA beta is estimated by dividing the EWMA covariance by the
EWMA variance with the same smoothing constant, i.e.

A _ COVX(XuYt)
VLX)

Having estimated beta, we obtain the residual returns series
&=Y, — Bt_xxv

Then, using method 1, the normal linear specific VaR is estimated from the EWMA standard
deviation of of these residuals, using the usual formula, i.e.*®

Specific VaR,, , = ® {1 —a)vho'. (1V.2.48)

ht,a

32 This follows from the analysis of variance in a regression model (see Section 1.4.2.4).
33 This formula assumes the data are daily and that we ignore the discounted mean residuals, which anyway will be negligible unless
h is very large.



92 Value-at-Risk Models

This method will always gives a positive specific VaR that is less than the total VaR. To see
this, substitute EWMA variances in (1V.2.45) and rearrange, yielding

A2 ~
Vx(sc) = VX(Yt) + B[‘XVA(Xt) - ZBt,)\COV)x(XL’Yt)

= V(¥ +B,,, (B, Vi(X) — 2Cov (X, V) )

~

= Vi(Y) —B,,(Covy(X,, Y)).

But Bt_xCovx(Xt,Yt) > 0 so the specific VaR is always less than the total VaR, and because it
is a variance it is always positive.

Figure 1V.2.5 illustrates the application of the EWMA methodology for estimating total,
systematic and specific VaR to a portfolio of stocks in the S&P 100 index. The 1% 10-day VaR
is here expressed as a percentage of the portfolio value and the smoothing constant used for
the figure is A =0.95 (but this, as well as the portfolio weights and the VaR model parameters,
may be changed by the reader in the spreadsheet). Although the portfolio is fairly highly
correlated with the index most of the time, there are short intervals when the specific VaR is
greater than the systematic VaR, but never greater than total VaR.

Total VAR
Systematic VaR
- Specific VaR

Jul-00 -
Jan-01 -
Jul-01
Jan-02 -
Jul-04
Jan-05 -
Jul-05
Jan-06 -
Jul-06 -
Jan-07 A

Figure 1V.2.5 Systematic and specific VaR based on EWMA

In summary, both OLS and EWMA estimates for the factor model betas and the covari-
ance matrix allow VaR decomposition into systematic and specific VaR, but the EWMA
approach yields more risk sensitive estimates. It is inadvisable to mix methodologies, for
instance, by using OLS for the covariance matrix and EWMA for the factor model betas, and
when EWMA is used take care to follow the procedure outlined above. For consistency, all

variances, covariances and betas should be estimated using the same smoothing constant in the
EWMA.



Parametric Linear VaR Models 93

V.26 SYSTEMATIC VALUE-AT-RISK DECOMPOSITION
FOR STOCK PORTFOLIOS

In Section 1V.2.2 we explained how systematic VaR, i.e. total risk factor VaR, can be attributed
to different risk factors under the normal linear VaR model. This section illustrates this VaR
decomposition by considering several equity portfolios with different types of risk factor
exposures, showing how to decompose the systematic VaR into stand-alone and marginal
VaR components. Although we remain with the normal linear VaR model for our empirical
examples, the decomposition method applies equally well to other types of parametric linear
VaR model.

IV.2.6.1 Portfolios Exposed to One Foreign Currency

To purchase securities on foreign exchanges one has first to purchase the local currency.
Hence, portfolios with international equities have forex rates as risk factors where the nominal
factor sensitivity is equal to the amount invested in the currency. In this section we consider
a stock portfolio with exposure to just one foreign currency, to illustrate the VaR decom-
position into equity and forex components, assuming for simplicity that both domestic and
foreign interest rates are zero. As usual, the discounted expected return on the portfolio is also
assumed to be negligible over the risk horizon, so all we need to consider for the systematic
VaR calculations is the covariance matrix of the risk factors.

We first prove that in the parametric linear VaR model the systematic VaR is sub-additive.
That is, the total systematic VaR is never greater than the sum of the stand-alone component
VaRs. To prove this we begin by noting that log returns are additive, so the log return in
domestic currency on an exposure to a foreign equity market may be written as

R, + X,

where R, is the h-day log return on the portfolio in foreign currency and X, is the h-day log
return on the domestic/foreign exchange rate.

Now consider the factor model representation of the equity log return in foreign currency,
i.e. set

R, = BYh,
where Y, is the h-day log return on the foreign risk factor (e.g. the foreign market index). Then

the standard deviation o, of the h-day log return in domestic currency is the standard deviation
of BY, + X,. That is,

0, = \/5205;1 + 0%, + 2Booyo =,/ (3 1), <§> (1V.2.49)

In the above, o denotes the quanto correlation between the foreign market index returns in
foreign currency terms and the exchange rate returns, and

2
_ Oy Q0v0xh
Q, = )
OO0 yrOxh Oy,

is the h-day covariance matrix of these returns.
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Decomposition into stand-alone components

Knowing o, we can compute
Systematic VaR, , = ® (1 — a)oy,, (IV.2.50)
expressed as a percentage of portfolio value. The equity and forex components of the
systematic VaR are
Equity VaR, , =3P %1 — a)oy, (IV.2.51)
and
FX VaR, , = ® (1 — a)oy,. (IV.2.52)
Rewriting (1V.2.49) as
o, = (Boyy +0x,)* = 28(1 — Q)00
and using the expressions for equity and forex VaR above gives an exact decomposition of
systematic VaR as

[Total systematic VaR]? = [Equity VaR + Forex VaR]?
—2(1 — o)[Equity VaR] x [Forex VaR].

Hence,
Total systematic VaR < Equity VaR + Forex VaR, (IV.2.53)

with equality if and only if o = 1.

However, it is extremely unlikely that o = 1. Indeed, since quanto correlations can be small
and are often very difficult to forecast, the quanto correlation ¢ might be assumed to be zero.
In that case the decomposition into stand-alone VaR components becomes

Total systematic VaR = \/ Equity VaR? + Forex VaR?.

If the quanto correlation is large and negative it is possible that the systematic VaR is less than
both the stand-alone equity VaR and the forex VaR, as illustrated in Example 1V.2.14.

Decomposition into marginal components

For the decomposition of total systematic VaR into marginal components we use the approx-

imation described in Section 1V.2.2.4. In the case of the parametric linear VaR model the

gradient vector is given by

q>_1(1 — O()ﬂhe
NCEC

where 0 is the vector of risk factor sensitivities.

9(6) = (IV.2.54)
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Following our discussion in Section 1V.2.2.3, the ith marginal component VaR is obtained
by multiplying the ith component of the gradient vector by the ith nominal sensitivity.
Note that

0'g0) =D (1—a)v/0'R,, (IV.2.55)

and so the total systematic VaR is the sum of the marginal VaR components. The next
numerical example illustrates this construction.

EXAMPLE 1V.2.14: EQUITY AND FOREX VAR

A US investor buys $2 million of shares in a portfolio of UK (FTSE 100) stocks and the
portfolio beta is 1.5. Suppose the FTSE 100 and $/£ volatilities are 15% and 20% respec-
tively, and their correlation is 0.3. What is the 1% 10-day systematic VaR in US dollars?
Decompose the systematic VaR into (a) stand-alone and (b) marginal equity and forex
components.

SOLUTION Given the data, the 10-day risk factor covariance matrix has the following
elements:

e FTSE 100 variance 0.0225/25 = 0.0009;
e $/£ variance 0.04/25=0.0016;
e with a correlation of 0.3, the 10-day covariance is

(0.3 x0.15 x 0.2)/25 = 0.00036.

The 10-day returns variance is thus

9 36)(15 Y
(15 1) (3.6 16)( 1)x10 — 0.004705,

so the 10-day 1% systematic VaR is 2.32635 x +/0.004705 = 15.9571% of the portfolio value.
Since the portfolio has $2 million invested in it, its 1% 10-day systematic VaR is 15.9571% of
$2,000,000, i.e. $319,142.

(a) Consider the stand-alone component VaRs:

Equity VaR =2.32635 x (0.15/5) x 3,000,000 = 2.32635 x 90,000
=$209,371,
Forex VaR =2.32635 x (0.2/5) x 2,000,000 =2.32635 x 80,000
=$186,108.

Hence
Equity VaR + Forex VaR = $395,479,

which is greater than the total systematic VaR.
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(b) For the marginal VVaRs we first compute the gradient vector. Since

(9 36\ (15 L (171 »
52109—<3.6 16)( 1>X1° —<21.4)X10 ’

the gradient vector is

VIR0  /0.004705 \21.4 0.07258

Hence the marginal VaRs are:

®(0.99)R2,,0  2.32635 (17.1) 104 — <0.05800)

Equity marginal VaR = 3,000,000 x 0.05800 = $173,985,
Forex marginal VaR = 2,000,000 x 0.07258 = $145,157.

and the sum of these is $319,142, which is equal to the total VaR.
When marginal VaRs are expressed as a percentage of the total VaR they tell the investor
how much risk stems from each risk factor in a diversified portfolio. Hence

e 173,985/319,142 =54.5% of the risk is associated with the equity exposure, and
e 145,157/319,142 = 45.5% of the risk is from the foreign exchange exposure.

When the quanto correlation is large and negative it may be that the total risk factor VaR is
less than either the equity VaR or the forex VaR, and in fact it can be less than both of them.
To illustrate this point we change the quanto correlation in the above example between —1
and +1, and this gives different figures for the total risk factor VaR shown by the grey line
in Figure 1V.2.6. We see that when the quanto correlation is less than about —0.6, the total
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Figure IV.2.6 Total risk factor VaR versus quanto correlation
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systematic VaR due to both equity and forex factors becomes less than both the equity VaR
and the forex VaR.

The general point to take away from this section is that the total systematic VaR is always
equal to the sum of the marginal VaRs, but it is almost always less than the sum of the stand-
alone VaRs, because stand-alone VaR measures the risk due to a factor in isolation and does
not account for any diversification effects. Indeed, the total systematic VaR could be less than
either, or both, of the stand-alone VaRs. It would only be equal to the sum of the stand-alone
VaRs if the risk factor correlations were all equal to 1, which is extremely unlikely.

IV.2.6.2 Portfolios Exposed to Several Foreign Currencies

We now consider stock portfolios with investments in several different countries, using a broad
market index as the single equity risk factor in each country. Following our general discussion
in Sections 1V.2.2.3 and 1V.2.2.4, it is convenient to partition the risk factors into equity and
foreign exchange factors. For the moment we retain the assumptions that both domestic and
foreign interest rates are zero (and that the discounted expected return on the portfolio is also
zero) so there are no interest rate risk factors.

Denote by 6 and 6y the vectors of equity and forex rate risk factor sensitivities. The stand-
alone VaR decomposition is based on the variance decomposition:

9’9;,9 == 0;5525;,95 + e),(ﬂ)(;lex + Ze%sZEXheX, (|V256)
where 6 = (6, 6,)" and
Q Q
Q= m) IV.2.57
h (9 oo (IV.257)

is the h-day risk factor covariance matrix, partitioned into equity and forex risk factors. Note
that the quanto correlation between equity returns and forex returns is often negative. If it is
both large and negative, the total systematic VaR can be less than either the equity VaR or the
forex VaR, or both, as we have seen (for the single risk factor case) in Example 1V.2.14 above.

EXAMPLE 1V.2.15: VAR FOR INTERNATIONAL EQUITY EXPOSURES

Consider a US dollar investment in a large international stock portfolio with the characteristics
shown in Table 1V.2.13. Suppose that the correlation between all equity risk factors is 0.75, the
correlation between the two forex risk factors is 0.5, and the quanto correlations are each 0.2.

Table 1V.2.13 Characteristics of an international equity portfolio

Index Local equity Forex

Nominal 3  Return \olatility Netdollar 3 Return ~ \olatility  Nominal

S&P 500 $2m 09 X, 20% $1.8m N/A
FTSE100 $2m 11 X, 22% $2.2m X5 ($/£)  15% $2m
CAC 40 $3m 12 X, 25% $3.6m X (3/€)  10% $7m

DAX 30 $4m 13 X4 27% $5.2m
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Find the 1% 10-day systematic VaR of this portfolio and decompose this into (a) stand-alone
and (b) marginal equity and forex components.

SOLUTION In Table 1V.2.13 the net dollar beta is the product of the percentage beta and the
nominal dollar exposure to the index. With these dollar betas, and the notation defined in the
table, we can write the systematic P&L, Y in US dollars as

Y=18X;4+22X,+36X3+52X,+2Xs+7 X.

Given the data on risk factor volatilities and correlations, we construct the annual risk factor
covariance matrix € shown in Table 1V.2.14, with the partition drawn as in (1V.2.57).

Table IV.2.14  Annual covariance matrix € of equity and forex risk factor returns

0.04 0.033 0.0375 0.0405 0.006 0.004
0.033 0.0484 0.04125 0.04455 0.0066 0.0044
0.0375 0.04125 0.0625 0.050625 0.0075 0.005
0.0405 0.04455 0.050625 0.0729 0.0081 0.0054
0.006 0.0066 0.0075 0.0081 0.0225 0.0075
0.004 0.0044 0.005 0.0054 0.0075 0.01

The total P&L annual variance due to all risk factors is given by 6’20, where € is as above
and 6= (1.8, 2.2, 3.6, 5.2, 2, 7). The value of 6’20 is calculated in the Excel spreadsheet
and the result is 10.2679. To find the systematic normal linear VaR of this portfolio, we simply
take the square root of the P&L variance and use the square-root-of-time rule. Hence the 1%
10-day systematic VaR due to all risk factors is:

2.32635 x +/10.2679 x 0.2 =2.32635 x 3.2044 x 0.2 = $1.490889 million.

(@) We use (1V.2.56) to decompose the total P&L variance due to all risk factors into
e the variance due to the equity factors,

0.04 0.033 0.0375 0.0405\ /1.8
0.033  0.0484 0.04125 0.04455]| | 2.2
0.0375 0.04125 0.0625 0.05063 | | 3.6
0.0405 0.04455 0.05063 0.0729) \5.2

(18 2.2 3.6 5.2) —8.2187;

e the variance due to the forex factors,

00225 0.0075) (2
@7 (0.0075 0.01> (7)20'79’

e and the covariance due to the ‘quanto’ factors,

0.006  0.004
0.0066 0.0044 | (2
(1.8 22 36 5.2) 00075  0.005 <7>=0.6296.

0.0081 0.0054
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Taking the square root of the equity and forex variances, multiplying by the relevant critical
value of the standard normal distribution and diving by 5 (to convert the annual VaRs into
10-day VaRs), the decomposition of the 1% 10-day total systematic VaR is summarized in
Table IV.2.15.

Table IV.2.15 VaR decomposition for diversified
international stock portfolio

Equity VaR $1,333,847
FX VaR $413,541
Sum of stand-alone VaRs $1,747,388
Total systematic VaR $1,490,889

(b) To estimate the marginal VVaRs we first compute the gradient vector, in annual terms. Since

0.04 0033 00375 0.0405 0.006 0.004\\ /18 0.5302
0.033 0.0484 0.04125 0.04455| |0.0066 0.0044 | | (52 0.5900
0.0375 0.04125 0.0625 0.05063 | |[0.0075 0.005] | |3 0.6965
6= 100405 004455 005063 0.0729) \0.0081 0.0054) | |52|= 07862 |

0.006 0.0066 0.0075 0.0081 0.0225 0.0075 2 0.1919
0.004 0.0044 0.005 0.0054 0.0075  0.01 7 0.1480

the annual gradient vector is

0.5302 0.3849

0.5900 0.4284

®10.99)Q26 2.32635 | 0.6965 0.5057
NCEoX) _\/10.2679 0.7862 0.5708
0.1919 0.1393

0.1480 0.1074

The marginal VaRs are, therefore,*

Equity marginal VaR = $(1.8 x 0.3849 + 2.2 x 0.4284 + 3.6 x 0.5057 + 5.2 x 0.5708) x 0.2
=$1,284,765

and
Forex marginal VaR =$(2 x 0.1394 + 7 x 0.1074) x 0.2 = $206,125.
As usual, the sum of these is equal to the total VaR. Hence, approximately

1,284,765

o Y 869
1,490, 889 86%

34 The marginal VaRs may be further decomposed into marginal components due to each specific risk factor, as shown in the
spreadsheet for this example.
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of the risk, on a diversified basis, stems from the equity exposure and only

206,125

T —14%

1,490,889
of the risk arises from the forex exposure. Notice that the marginal forex VaR is less than half
of the stand-alone forex VaR; the forex exposure has this effect because the diversification
benefit is significant, due to the low quanto correlation.

IV.2.6.3 Interest Rate VaR of Equity Portfolios

Exposures to interest rates arise in equity portfolios that are hedged with futures or when the
foreign currency exposures that arise in international equity portfolios are transacted on the
forward currency market.®® Assuming that an investment of $N in a foreign equity index is
financed by taking a foreign currency forward position, there are equal and opposite exposures
of +$N and —$N to the foreign and domestic zero-coupon interest rates of maturity equal to
the maturity of the currency forward.

EXAMPLE IV.2.16: INTEREST RATE VAR FROM FOREX EXPOSURE

A US investor buys $2 million of sterling 10 days forward, when the 10-day Treasury bill rate
is 5% and the 10-day spot rate is 4.5% in the UK. If these interest rates have volatilities of 100
basis points for the Treasury bill and 80 basis points for the UK rate, and a correlation of 0.9,
calculate the 1% 10-day interest rate VaR.

SOLUTION The interest rate risk arises from the cash flows of $2 million on the UK interest
rate and —$2 million on the US interest rate. The PVVO1 vector is calculated in the spreadsheet
using the method described in Section I11.1.8. First we compute the change in each discount
factor for a one basis point decrease in the corresponding interest rate and then we multiply
these changes by the exposures of $2 million and —$2 million, respectively. This gives the
PVO01 vector 6 = (5.47, —5.46)" in US dollars. The annual covariance matrix of the interest
rates, in basis points, is

o (6400 7,200
~\7.200 10,000/

Now using the usual formula (6'26) for the variance and calculating the 1% 10-day VaR in
the usual way gives a grand total of $114 for the interest rate VaR.

This example shows that interest rate VaR on equity portfolios arising from foreign exchange
forward positions is very small indeed. Unless there are large interest rate differentials between
the domestic and foreign currencies and the forward date for the forex transaction is very
distant, the interest rate risks arising from this type of transaction are negligible compared
with the equity and forex risks.

35 Hedging with futures introduces a dividend risk in addition to interest rate risk and we shall deal with this separately in the next
section.
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IV.2.6.4 Hedgingthe Risks of International Equity Portfolios

Foreign investors wishing to accept risks only on equity markets can hedge the forex risk
by taking an equal and opposite position in the currency, so that the forex VaR is zero. For
instance, in Example 1V.2.15 where the US investor has a long sterling exposure of $2 million
and a long exposure to the euro of $7 million, if the investor wants to hedge the forex risk
he should take a short position of $2 million on sterling and a short position of $7 million
on the euro. Then the net currency exposure is zero, so the forex VaR is zero. Thus the total
systematic VaR is equal to the equity VaR.

The forex hedges introduce a new systematic VaR due to the interest rate risk factors, but
we have seen from the previous example that the interest rate VaR is very small compared
with the equity VaR, and compared with the specific VaR of a stock portfolio. Nevertheless,
for the sake of completeness, the following example shows how to measure all the sources of
risk for a typical, hedged stock portfolio.

EXAMPLE I1V.2.17: VAR FOR A HEDGED INTERNATIONAL STOCK PORTFOLIO

A European investor has $5 million invested a portfolio of volatile S&P 500 stocks, with an
S&P 500 market beta of 1.5. The volatilities of the S&P 500 and €/$ rate are 20% and 15%
respectively, and their correlation is —0.5.

(a) Find the 1% 1-day total systematic VaR and the VaR due to each risk factor.

(b) He now hedges the portfolio’s equity exposure by selling a 3-month future on the S&P
500 index and further hedges the currency exposure with a short position on US dol-
lars, 3 months forward. The 3-month US dollar and euro interest rates are 4% and 3.5%
respectively, and the dividend yield on the S&P 500 is 3%. The volatilities and correla-
tions of these risk factors are summarized in Table 1V.2.16. Find the 1% 1-day VaR due
to each of the risk factors.

(c) Ifthe portfolio volatility is 35%, calculate the hedged portfolio’s 1% 1-day specific VaR.

Table 1V.2.16 \olatilities and correlations of risk factors

\olatilities Correlations
US 3-month interest rate 80bps  US interest rate—euro interest rate 0.5
Euro 3-month interest rate 100bps ~ US interest rate—dividend yield 0.3
S&P 500 dividend yield 20bps  Euro interest rate—dividend yield 0

SOLUTION

(a) The initial VaR calculations, before hedging, are based on the same method as
Example 1V.2.14 and the results are shown in Table 1V.2.17.

Table IV.2.17 VaR decomposition into equity and forex factors

Total systematic VaR $191,129
Equity VaR $220,697
Forex VaR $110,348

(b) The equity and forex hedges introduce three new risk factors: the 3-month euro interest
rate, with an exposure of $5 million because he has sold $5 million 3 months forward
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against the euro; the S&P 500 dividend yield, with an exposure of $7.5 million because,
with a beta of 1.5, this is the amount he sells of the 3-month S&P 500 future for the
equity hedge; and the 3-month US interest rate with an exposure of —3$5 million from
the forex hedge and an additional —$7.5 million from the equity hedge, making a total
exposure of —$12.5 million to the US interest rate.

We now calculate the sensitivities of these exposures. With a 4% (annual) 3-month
interest rate, the discount factor is (1.01)~* =0.9901 and, as shown in the spreadsheet,
the change in the discount factor for a one basis point decrease in the interest rate, i.e.
the 301, is

8015_month = 0.245 x 107*,
Similarly the euro interest rates and the US dividend yield have 801s that are calculated
in the spreadsheet to be 0.246 x 10~

The exposure to the US interest rate, the euro interest rate and the dividend yield

respectively is {—12.5, 5, 7.5} in millions of dollars. Hence, the PVO1 vector in
dollars is®

6=0.25x 100 x (—12.5, 5, 7.5)" = (—306.35, 122.84, 184.72)".

Given the risk factor volatilities and correlations in Table 1V.2.16, the 1-day covariance
matrix of the risk factor returns is

256 16 1.92
=16 40 o
192 0 16

For instance, 25.6 = 80?/250, and so forth. Hence, the 1-day variance of the P&L is
0'Q2,6 =1,639,222.
So, after the hedges the 1% 1-day total systematic VaR is:
Total systematic VAR oo = 2.32635 x /1,639,222 = $2978.
The 1% 1-day VaR due to each risk factor is
2.32635 x |PV0L;| x 01,
where o ; is the 1-day standard deviation of the ith risk factor. Hence,

US interest rate VaR; g0, =2.32635 x 306.35 x 80/+/250 = $3606,
Euro interest rate VaR; g = 2.32635 x 122.84 x 100/+/250 = $1807,
US dividend yield VaR; g o; = 2.32635 x 184.72 x 20/+/250 = $544.

Note that the US interest rate VaR is larger than the total VaR, which is not unusual
when we have opposite positions in positively correlated risk factors.

36 The factor of 100 here arises because we multiply by $1,000,000 and by 1 basis point, i.e. 0.0001.
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(c) By far the largest residual VaR after the equity and forex hedge is going to arise from the
specific VaR, i.e. from the tracking error of this portfolio. This is because we are hedging
a portfolio that has a market beta of 1.5 with an index futures contract. Assuming the
residuals are uncorrelated with the futures, the specific variance, in annual terms, is

0.35% — 1.5% x 0.2 = 0.0325.

Hence, the 1% 1-day specific VaR is

0.0325

Specific VaR; g = 2.32635 x x $5,000,000 = $132,622.

IV.2.7 CASE STUDY: NORMAL LINEAR VALUE AT RISK
FOR COMMODITY FUTURES

In this section we calculate the normal linear VaR for two commaodity futures trading desks,
one trading natural gas futures and the other trading silver futures. We shall calculate the
VaR for each desk, and then aggregate these into a total VaR covering both the desks. The
data used in this study are NYMEX futures on natural gas and silver with maturities up to 6
months. Each natural gas futures contract is for 10,000 million British thermal units and each
silver futures contract is for 5000 troy ounces.

The desks can take long or short positions on the futures according to their expectations
and we assume the traders have mapped their positions to constant maturity futures at 1, 2, 3,
4 and 5 months using the commaodity futures mapping described in Section 111.5.4.2.

Applying linear interpolation to daily data on the NYMEX traded futures prices, we first
construct a historical series of daily data on constant maturity futures from 3 January 2006 to
31 January 2007. We shall use these data to measure the VaR on 31 January 2007. The constant

maturity futures on the two commodities over the sample period are shown in Figures 1V.2.7
and 1V.2.8.
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Figure IV.2.7 Constant maturity futures prices, silver
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Figure 1V.2.8 Constant maturity futures prices, natural gas

The natural gas futures prices have a very strong contango (upward sloping term structure)
during the summer of 2006. Like the spot price, near term futures prices were rather low in the
summer of 2006 because storage was almost full to capacity. The silver futures prices are much
closer to each other than the natural gas futures prices. The silver term structure is very flat
most of the time and there is no seasonality in the prices. Price jumps are quite common, due to
speculation, because silver is an investment asset as well as being used in industrial processes.

Table 1V.2.18 shows the volatilities and correlations of each set of constant maturity futures
returns. These are calculated from the daily returns over the entire sample. Both are highly

Table IV.2.18 \olatilities and correlations of natural gas and silver futures

Gas

Correlations 1 month 2 month 3 month 4 month 5 month
1 month 1

2 month 0.910 1

3 month 0.914 0.9492 1

4 month 0.912 0.9276 0.960 1

5 month 0.888 0.9173 0.950 0.9639 1
\olatilities 58.70% 55.09% 49.82% 45.87% 41.85%
Silver

Correlations 1 month 2 month 3 month 4 month 5 month
1 month 1

2 month 0.939 1

3 month 0.942 0.918 1

4 month 0.880 0.863 0.960 1

5 month 0.799 0.840 0.892 0.935 1

\olatilities 44.13% 43.98% 42.78% 43.35% 40.46%
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correlated along their own term structures and natural gas futures returns are more volatile
than silver futures returns.

We now consider the positions taken on each trading desk on 31 January 2007. These are
shown in Table 1V.2.19. First we show the price and number of units of each futures contract,
then the position values are calculated as the product of the number of contracts and the price
of the contract, multiplied by either 10,000 (the trading unit for natural gas futures) or 5000
(the trading unit for silver futures).

Table IV.2.19 Commodities trading desk positions on natural gas and silver

1 month 2 month 3 month 4 month 5 month
Price: gas futures 7.67 7.66 7.69 7.70 7.84
Price: silver futures 13.50 13.39 13.62 13.62 13.56
No contracts: gas —75 —-30 -10 15 25
No contracts: silver 100 50 20 -50 —100
Position values: gas —$5,750,250 —$2,297,200 —$769,000 $1,155,000 $1,960,875

Position values: silver $6,748,000 $3,347,150 $1,362,100 —$3,405,250 —$6,777,721

The commodities trading desks are betting on an imminent fall in price for natural gas, since
it has short positions on the short maturities and long positions on longer maturities, and an
imminent rise in price for silver, taking long positions in shorter maturities and short positions
in longer maturities.

The 1% 10-day stand-alone VaR for each desk is calculated in the spreadsheet using the
formula

Vangyo_gl = @71(0.99)\/ 0,919 X A/ 10,

where 0 is the position value vector given in the last rows of Table IV.2.19 and €, isthe 5 x 5
1-day covariance matrix of the constant maturity gas or silver futures daily returns. A similar
formula is applied to obtain the total VaR aggregated over both desks, now using the position
value vector in the last two rows of Table 1V.2.19 combined, and the 10 x 10 1-day covariance
matrix of natural gas and silver futures daily returns. The marginal VaRs were calculated using
the methodology described in Section 1V.2.2.4.%

The results are shown in Table 1V.2.20. The marginal VaRs tell us that trading on gas futures
contributes 69% of the total risk and trading on silver futures contributes 31% of the total risk,
after adjusting for the diversification effects from the two activities.*®

The stand-alone VaRs measure risk without accounting for diversification. Hence, the sum
of the two stand-alone VaRs is greater than the total VaR — this is because the natural gas
and silver futures have less than perfect correlation. If the correlation between natural gas and

37 We do not give full details of this calculation here, since several other numerical examples have already been provided and the
calculation is performed in the spreadsheet for this case study.

38 However, this does not imply that capital allocation should use these marginal VaRs in a risk adjusted performance measure. There
is no reason why either trading desk should be advantaged (or disadvantaged) by the fact that diversification across trading activities
reduces total risk. Indeed capital would normally be allocated using a risk adjusted performance measure based on the stand-alone
VaR for each desk.
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Table IV.2.20 1% 10-day VaR of commaodity
futures desks

VaR Stand-alone Marginal
Gas $1,720,139 $1,394,727
Silver $1,180,168 $614,955
Total $2,009,682

silver futures changed, all else remaining the same, this would not affect the stand-alone VaRs.
But it would affect the total VaR and hence also the marginal VaRs.

V.28 STUDENT t DISTRIBUTED LINEAR VALUE AT RISK

In this section we shall extend the analytic formula for normal linear VaR to the case where the
portfolio returns and the risk factor returns are assumed to have a Student ¢ distribution. First,
to motivate this formula, Section 1V.2.8.1 describes the effect that leptokurtosis has on a VaR
estimate. Then Section 1V.2.8.2 derives a parametric linear VaR formula for the case where the
portfolio’s returns are generated by a Student ¢ distribution, and extends this to systematic VaR
when the risk factor returns have a multivariate Student ¢ distribution. Empirical examples are
provided in Section 1V.2.8.3.

1V.2.8.1 Effect of Leptokurtosis and Skewness on VaR

A leptokurtic distribution is one whose density function has a higher peak and greater mass
in the tails than the normal density function of the same variance. In a symmetric unimodal
distribution, i.e. one whose density function has only one peak, leptokurtosis is indicated by a
positive excess kurtosis.*

Leptokurtosis is one of the basic ‘stylized facts’ emerging from examination of the
empirical distributions of financial asset returns. Also apparent is the skewness of return
densities, particularly for equity returns which often have a strong negative skew (heavier
lower tail). With leptokurtosis and negative skewness in risk factor return distributions the
normal linear VaR formula is likely to underestimate the VaR at high confidence levels. In
commodity returns a positive skew (heavier upper tails) is often seen, but for companies that
are short commodity futures, losses are made following price rises, and here the positive skew-
ness effect compounds the leptokurtosis effect on VaR. Again, the normal linear VaR formula
is likely to underestimate the VaR at high confidence levels.

Figure IV.2.9 illustrates the impact of leptokurtosis on the VaR estimate. Both of the density
functions shown in the figure are symmetric, but the density depicted by the black line is
leptokurtic, i.e. it has a higher peak and heavier tails than the ‘equivalent’ normal density (i.e.
the normal density with the same variance) which is shown in grey. For each density the
corresponding 1% and 5% VaR estimates are shown. We observe the following:

39 For an introduction to skewness and kurtosis, see Section 1.3.2.7.
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Figure 1V.2.9 Comparison of normal VaR and leptokurtic VaR

e For low significance levels (e.g. 5%), the normal assumption can overestimate VaR if the
return distribution is leptokurtic.

e For higher significance levels (e.g. 0.5%), the normal assumption can seriously underes-
timate VaR if the return distribution is leptokurtic.

e The significance level at which the VaR becomes greater under the leptokurtic distri-
bution depends on the extent of the excess kurtosis. If the excess kurtosis is large, the
leptokurtic VaR will exceed the normal VaR even at 10% significance levels. For an
empirical illustration of this, see Example 1V.2.20.

As the confidence level of the VaR estimate increases (i.e. a becomes smaller) there
always comes a point at which the leptokurtic VaR exceeds the normal VaR. Referring to
Figure 1V.2.9, and noting the ‘intermediate’ region where the leptokurtic density curve lies
below the equivalent normal density, the reason for this becomes clear. In the tails (and the
centre) the leptokurtic density function lies above the equivalent normal density function;
hence the leptokurtic VaR will be the greater figure for all significance levels above some
threshold. But in the intermediate region, the ordering may be reversed.

We know from Section 1.3.3.7 that Student ¢ distributions are leptokurtic. When significant
positive excess kurtosis is found in empirical financial return distributions, the Student ¢
distribution is likely to produce VaR estimates that are more representative of historical
behaviour than normal linear VaR. However, by the central limit theorem, the excess kurtosis
in financial returns decreases as the sampling interval increases. Thus, whilst daily returns
may have a large positive excess kurtosis, weekly returns have lower kurtosis and monthly
returns may even have excess kurtosis that is close to zero.

1V.2.8.2 StudenttLinear VaR Formula

In this subsection we derive an analytic formula for the Student ¢ VaR.* It is useful when VaR
is estimated over a short risk horizon, as positive excess kurtosis can be pronounced over a

40 One of the first applications of the Student ¢ distribution to VaR estimation was by Huisman et al. (1998).
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period of a few days or even weeks. But for risk horizons of a month or more, returns are
likely to be approximately normally distributed, by the central limit theorem.

The standard Student ¢ distribution with v degrees of freedom was introduced in
Section 1.3.3.7. If a random variable T has a Student ¢ distribution with v degrees of freedom
we write T ~t,, and its density function is

£l = (\)n)*l/zr(g)_l r (‘) "2L 1) (14+ve) () (IV.2.58)

where the gamma function I' is an extension of the factorial function to non-integer
values.*

The distribution has zero expectation and zero skewness. For v > 2 the variance of a
Student ¢ distributed variable is not 1, but

V(T)=v(v—2)"". (Iv.2.59)
Its excess kurtosis x is finite for v > 4, and is given by
x=6(v—4) " (1Iv.2.60)

The Student ¢ density has a lower peak than the standard normal density, and it converges to
the standard normal density as v — oo. But the density is leptokurtic, since when we compare
it with the equivalent normal density, i.e. the one having the same variance as (1V.2.59), the
peak in the centre of the distribution is higher than the peak of the equivalent normal density,
and the tails are heavier.

The o quantile of the standard Student ¢ distribution is denoted by ¢ *(«). Since quantiles
translate under monotonic transformations,*? the o quantile of the standardized Student ¢ dis-
tribution with v degrees of freedom, i.e. the Student ¢ distribution with mean 0 and variance 1,
is v/v-I(v —2)t;} (). Let X denote the daily return on a portfolio and suppose it has standard
deviation o and discounted mean .. To apply a Student ¢ linear VaR formula to the portfolio
we need to use the quantiles from a generalized Student ¢ distribution, i.e. the distribution of
the random variable X = + o T, where T is a standardized Student ¢ random variable.

Note that the ordinary Student ¢ quantiles satisfy

—t o) =61 — ), (IV.2.61)

because the distribution is symmetric about a mean of zero. So, using the same argument that
we used in Section 1V.2.2 to derive the normal linear VaR formula, it follows that

Student ¢ VaR,, = /v 1(v—2) t;(1 — a)o — . (IV.2.62)

41 When x is an integer, I'(x) = (x — 1)!. See Section 1.3.4.8 for further details about the gamma function.
42 That is, if X has distribution F(x) and y=aX, a being a constant, then Y has « quantile y, = ax, =aF ().
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The Student ¢ distribution is not a stable distribution,*® so the sum of i.i.d. Student ¢ variables
is not another Student ¢ variable. Indeed, by the central limit theorem the sum converges
to a normal variable as the number of terms in the sum increases. When h is small, a very
approximate formula for the 100a%h-day VaR, as a percentage of the portfolio value, is

Student ¢ VaR,,, =/ v-i(v —2)h t, (1 — a)o — hp. (IV.2.63)

But when h is more than about 10 days (or even less, if v is relatively large) the normal linear
VaR formula should be sufficiently accurate.

The extension of (IV.2.63) to the systematic VaR for a linear portfolio that has been
mapped to m risk factors with sensitivities 6 = (64, ..., 6,,)" is, assuming the risk factors have
a multivariate Student ¢ distribution with v degrees of freedom,

Systematic Student t VaR, , =/v-1(v —2) £;1(1 — a)/0' 2,0 — ', (IV.2.64)

where €, denotes the m x m covariance matrix of the risk factor returns and p, denotes the
m x 1 vector of expected excess returns over the h-day risk horizon.

1V.2.8.3 Empirical Examplesof Student t Linear VaR

The critical value ;%1 —a) can be found in statistical tables or using the Excel function
TINV.* The degrees of freedom parameter v is estimated by fitting the distribution using
maximum likelihood estimation (MLE). Example 1.3.17 and its accompanying spreadsheet
explain how to do this in practice. Alternatively, a quick approximation to v may be obtained
using a simple ‘moment matching’ method called the method of moments, which entails equat-
ing the sample moments to population moments.*® We shall compare both methods in the
following example.

EXAMPLE IV.2.18: ESTIMATING STUDENT T LINEAR VAR AT THE PORTFOLIO LEVEL

Using the daily FTSE 100 data from 4 January 2005 to 7 April 2008 shown in Figure 1V.2.10,
estimate the degrees of freedom parameter for a generalized Student ¢ distribution represen-
tation of the daily returns, using (a) the method of moments and (b) MLE.*® Then compute
the 1% 1-day Student t VaR, as a percentage of portfolio value, using both estimates for the
degrees of freedom parameter.

SOLUTION The method of moments gives an estimate v = 6.07 for the degrees of freedom
parameter, but MLE gives O = 4.14.4 The resulting estimates of 1% 1-day VaR are 2.81%
for the method of moments estimate and 2.94% for the maximum likelihood estimate. Both
estimates are ignoring the possibility of non-zero skewness, because the Student ¢ distribution
is symmetric. But in fact the sample skewness is —0.258. This is because of the large falls in
the FTSE 100 index that are evident from Figure 1V.2.10.

43 See Section 1.3.3.11.

44 See Section 1V.4.2.4 (or Excel help) for details on how to apply the TINV function.

45 Note that the kurtosis is defined only for v > 4, so we must assume this, to apply the method of moments.
46 Data were downloaded from Yahoo! Finance, symbol “FTSE.

47 Note that it is not necessary to use an integer value for the degrees of freedom in the Student ¢ distribution.
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Figure 1V.2.10 FTSE 100 index price

EXAMPLE 1V.2.19: COMPARISON OF NORMAL AND STUDENT T LINEAR VAR

Using the maximum likelihood estimate of the degrees of freedom for the Student ¢ represen-
tation of the FTSE 100 index returns from the previous example, compare the Student ¢ linear

VaR with the normal linear VaR over a 1-day horizon, at the 0.1%, 1% and 10% significance
levels. Express your results as a percentage of the portfolio value.

SOLUTION The spreadsheet for the previous example is extended to include the normal

linear VaR, and using the three different significance levels. The results are displayed in
Table 1V.2.21.

Table 1V.2.21  Normal and Student ¢ linear VaR

Significance Level 0.1% 1% 10%
Student t VaR 5.64% 2.94% 1.20%
Normal VaR 3.39% 2.55% 1.41%

The 1-day Student ¢ VaR is considerably greater than the normal VaR at the 0.1% signifi-
cance level, it is a little greater than the normal VaR at the 1% level, and at the 10% significance
level the normal VaR is greater than the Student ¢ VaR. This is because the tails of the Student
t density have greater mass and the peak at the centre is higher than the normal density with

the same variance. Hence, for quantiles lying further toward the centre there may be less mass
in the tail of the Student ¢ density than in the tail of the normal density.

The above examples show that the model risk arising from the assumption that returns are
normally distributed is very significant, especially when VaR is measured at high confidence
levels such as 99.9%. The Student ¢+ VaR model provides a more accurate representation of
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most financial asset returns, but a potentially significant source of model risk arises from
assuming the return distribution is symmetric. Although there are skewed versions of the
Student ¢ distribution (see McNeil et al. (2005) and references therein), the non-linear trans-
formations that underpin these distributions remove the possibility of simple parametric linear
VaR formulae. By far the easiest way to extend the parametric linear VaR model to accommo-
date the skewness that is so often evident in financial asset returns is to use the mixture linear
VaR model, which is explained in the next section.

IV.29 LINEAR VALUE AT RISK WITH MIXTURE
DISTRIBUTIONS

In this section we show how mixtures of normal or Student ¢ distributions can be used to esti-
mate VaR, capturing both leptokurtosis and skewness in return distributions. Section 1V.2.9.1
provides a gentle introduction to the subject by summarizing the important features of sim-
ple mixtures of two distributions. Section 1V.2.9.2 explains how to calculate VaR when the
portfolio return distribution is assumed to be a normal mixture or a Student ¢ mixture dis-
tribution. In this case the parametric linear VaR is given by an analytic formula that does
not have an explicit solution, so we use numerical methods to find the mixture linear VaR.
Section 1V.2.9.3 explains how mixture distribution parameters are estimated from historical
data and Section 1V.2.9.4 provides empirical examples. Section 1V.2.9.5 illustrates the poten-
tial for mixture VaR to be applied in a scenario VaR setting, when using little or no historical
data on a portfolio’s returns. Finally, Section 1V.2.9.6 considers the case where the portfolio
is mapped to risk factors whose returns are generated by correlated i.i.d. normal mixture
processes with two multivariate normal components.

IV.2.9.1 MixtureDistributions

The mixture setting is designed to capture different market regimes. For instance, in a mixture
of two normal distributions, there are two regimes for returns: one where the return has mean
1 and variance o? and another where the return has mean ., and variance o2. The other
parameter of the mixture is the probability s with which the first regime occurs, so the second
regime occurs with probability 1 — .

The distribution function of a mixture distribution is a probability-weighted sum of the
component distribution functions. For instance, a mixture of just two normal distributions has
distribution function defined by

G(x) =1 F(x; b1, Gf) 4+ (1 — 1)F(x; o, GS), O<m<l, (IV.2.65)

where F(x; w;, 0?) denotes the normal distribution function with mean ; and variance o?, for
i=1, 2, and where 7 is the probability associated with the normal component with mean
w1 and variance o?. Differentiating (IV.2.65) gives the corresponding normal mixture density
function

g(x) = f(x; 1, 09) + (1 — 70)f(x; pa, 03), O0<m<l, (1V.2.66)

where f(x; 1;, o%) denotes the normal density function with mean p; and variance o?, for
i=1, 2. Full details about normal mixture distributions are given in Section 1.3.3.6.
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We illustrate the basic properties of mixture distributions by considering a simple mixture
of two zero-mean normal components, i.e. where ., =, = 0. In this case the variance of the
normal mixture distribution is

o’ =70’ + (1 — m)o3, (IV.2.67)
The skewness is zero and the kurtosis is

4 + 1 _ 4
x=3 le ( . “)"222 . (IV.2.68)
[le +(1 n)oz]

For instance, Figure 1V.2.11 shows four densities:

e three zero-mean normal densities with volatility 5%, 10% (shown in grey) and 7.906%
(shown as dotted line);

e a normal mixture density, shown in black, which is a mixture of the first two normal
densities with probability weight of 0.5 on each of the grey normal densities, and which
has volatility 7.906%.

0.09
Normal 1
0075y Normal 2 |
Mixture
0064
— — Normal
00454 -\
0034\
0.015 - Ly - AN
0

Figure1V.2.11 Comparison of a normal mixture with a normal density of the same variance

The variance of the mixture distribution is 0.5 x 5% 4+ 0.5 x 10> =62.5. Since 7.906 = +/62.5,
the mixture has the same variance as the dashed normal curve. However, it has a kurtosis of
4.87. In other words it has an excess kurtosis of 1.87, which is significantly greater than zero
(zero being the excess kurtosis of the equivalent (dashed) normal density in the figure).

Normal mixture distributions provide a simple means of capturing the empirically observed
skewness and excess kurtosis of financial asset returns. It is always the case that zero-mean
normal mixture densities have zero skewness but positive excess kurtosis: they have higher
peaks and heavier tails than normal densities with the same variance. Taking different means
in the component normal densities gives a positive or negative skew. See Figure 1.3.14 for an
example.



Parametric Linear VaR Models 113

1V.2.9.2 MixtureLinear VaR Formula

When the excess return X on a linear portfolio has a normal distribution, the analytic formula
(IVv.2.5) for normal linear VaR follows directly from the definition of VaR. But there is no
explicit formula for estimating VaR under the assumption that portfolio returns follow a mix-
ture density. However, using exactly the same type of argument as in Section 1V.2.2.1, we can
derive an implicit formula that we can solve using a numerical algorithm.

For instance, suppose there are only two components in a mixture density for the portfolio’s
returns, and write

Gx)=m Fl(x; W1, cf) + Q- ‘J'E)Fz(x; Mo, 05), O<m<l, (IV.2.69)

where F;(x; pu;, o?) denotes the distribution function with mean p; and variance o2, fori=1, 2,
and where T is the probability associated with the component with mean v, and variance o?.
Note that F; and F, need not be both normal; one or both of them could be a Student ¢
distribution, in which case the degrees of freedom v; should be included in their list of
parameters.

We have

P(X <x,) = G(x,) = 7 Fy(x: 2. 02) + (L = 1) Fox: o, 02). (IV.2.70)

and when P(X < x,) = a, then x, is the a quantile of the mixture distribution. Let X; be the
random variable with distribution function F;(x; j;, ¢?). Then
Fi("a? Pis 0-2) =P(X; <x,) = P(C‘i_l(Xi — W) < 0,»_1(xa - Mi)) .

i

But

Z, if F; is a normal distribution,

0,»_1(Xi_Mi)=Yi= . . P
T,, if F, is a Student ¢ distribution,

where Z is a standard normal variable and T; is a standardized Student ¢ variable with v,
degrees of freedom. Hence,

TP(Y1 < (xg — p1)0yt) + (L= )P(Y2 < (xa — R2)0, ) = 0. (IV.2.71)

But since Y, is a standardized Student ¢ or normal variable, we know its quantiles. That is,
we know everything in the above identity except the mixture quantile, x,. Hence, the mixture
quantile can be ‘backed out’ from (IV.2.71) using an iterative approximation method such as
the Excel Goal Seek or Solver algorithms (see Section 1.5.2.2). Finally, we find the mixture
VaR by setting VaR, = —x,.

For greater flexibility to fit the empirical return distribution we may also include more than
two component distributions in the mixture. The general formula for the mixture VaR, now
making the risk horizon h over which the returns are measured explicit, is therefore

Z mP(Y,- < (xpo — u,-;,)o;l) =aq. (IV.2.72)

i=1

As before, backing out x, , from the above gives VaR, , = —x, ..
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1V.2.9.3 Mixture Parameter Estimation

The 1000% h-day mixture VaR that is implicit in (1\V.2.72) will be expressed as a percentage
of the portfolio value if w;, and o, are the expectation and standard deviation of the compo-
nent returns, and it will be expressed in nominal terms if w; and o, are the expectation and
standard deviation of the component P&L. But how do we estimate these component means
and variances?

The estimation of the mixture parameters from historical data is best performed using the
EM algorithm, especially when the mixture is over more than two distributions. A description
of this algorithm and a case study illustrating its application to financial data are given
in Section 1.5.4. Empirically, we often find that we can identify two significantly different
regimes: a regime that occurs most of the time and governs ordinary market circumstances,
and a second ‘high volatility” regime that occurs with a low probability. In an equity portfolio
the low probability, high volatility regime is usually captured by a component with a large and
negative mean; in other words, this component usually corresponds to a crash market regime.

As the number of distributions in the mixture increases the probability weight on some of
these components can become extremely small. However, in finance it is seldom necessary to
use more than two or three components in the mixture, since financial asset return distributions
are seldom so irregular as to have multiple modes. When there are only a few components the
method of moments may be used estimate the parameters of a normal mixture distribution
in Excel. In this approach we equate the first few sample moments (one moment for each
parameter to be estimated) to the corresponding theoretical moments of the normal mixture
distribution.

The theoretical moments for normal mixture distributions are now stated for the general
case where there are m normal components with means and standard deviations p; and o;, for
i=1,2,..., m. The vector of probability weights, i.e. the mixing law for the normal mixture,
is denoted by t = (my, ..., =) where )", ; = 1. The non-central moments are

M, =E[X]= Zniuh
i=1
M= E[X7] = 3 (0 4 ).

i=1

- (IV.2.73)
M; =E[X°] =) (3o’ + 1),
i=1
M, =E[X*] =" m (30} + 611l0? + 11t),
i=1
and the mean, variance, skewness and kurtosis are
W= E[X] :Mlv
o =E[(X —w)?|=M, — M,
[ J=M:—M; (IV.2.74)

1=0"E[(X — w)*] =0"*(M; — 3MM, + 2M3)
x=0"E[(X — )] =0"*(Ms — 4M:M; + 6M;M, — 3M}) .
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Hence, when the method of moments is applied to estimate the parameters of a normal mix-
ture distribution, we equate (i, o, T, %) to the first four sample moments ({1, 6, T, %) by
changing the parameters of the normal mixture distribution. An empirical example is given in
the next subsection.

1V.2.9.4 Examplesof Mixture Linear VaR

In a case study in Section 1.5.4.4 we applied the EM algorithm to fit a mixture of two nor-
mal distributions to the daily returns on the FTSE 100 index, and likewise for the S&P 500
index and the $/£ exchange rate. For convenience, Table 1V.2.22 states the sample moments
and Table 1V.2.23 states the normal mixture parameter estimates for each of these variables,
based on the EM algorithm. In both tables the means and standard deviations are quoted in
annualized terms, assuming the returns are i.i.d.

Table 1V.2.22 Moments of the FTSE 100 and S&P 500 indices and of the $/£

forex rate

Variable Annualized Mean  \olatility ~ Skewness Excess Kurtosis
FTSE 100 4.62% 17.57% 0.0205 3.2570
S&P 500 7.35% 17.73% —0.0803 1.0525

FX rate 2.04% 7.99% —0.1514 2.6332

Table IV.2.23  Estimated parameters of normal mixture distributions (annualized)

Variable T W1 W2 (o2} [oF]

FTSE 100 0.3622 —3.58% 9.28% 26.35% 5.48%
S&P 500 0.2752 —1.01% 10.52% 29.80% 7.84%
FX Rate 0.6150 1.94% 2.21% 9.68% 4.01%

In the next example we use these parameters to estimate the normal mixture VaR for a US
investor in the FTSE 100 and S&P 500 indices.

EXAMPLE IV.2.20: ESTIMATING NORMAL MIXTURE VAR FOR EQUITY AND FOREX

Use the parameters in Table 1V.2.23 to estimate the 100a% 10-day normal mixture VaR for a
US investment in the FTSE 100 and S&P 500 indices. Report your results as a percentage of
the local currency exposure to each risk factor and compare them with the normal estimate of
VaR. Use significance levels of a = 10%, 5%, 1% and 0.1%.

SOLUTION For each of the three risk factors we use Solver or Goal Seek to back out the
normal mixture VaR from the formula (1V.2.71).*® The results are reported in Table 1V.2.24,
where they are compared with the equivalent normal VaR. Compared with the normal VaR, the
normal mixture VaR is greater than the normal VaR at higher significance levels. As expected,
the extent to which it exceeds the normal VaR increases as we move to a greater confidence

48 The algorithm must be repeated whenever you change the significance level.
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Table 1V.2.24  Comparison of normal mixture and normal VaR

VaR Model NM Normal NM Normal NM Normal NM Normal

Significance a=0.1% a=1% a=5% a=10%

FTSE 100 VaR  14.77% 10.67% 10.25%  7.99%  5.88% 5.60% 3.29%  4.32%
S&P 500 VaR 16.04% 10.66% 10.74%  7.96% 5.46% 554% 2.88%  4.25%
Forex VaR 5.62% 4.86% 406%  3.64% 2.63% 255% 1.86% 1.97%

level in the VaR estimate, and the difference is most pronounced in the S&P 500 since this
has the largest negative skewness of all three risk factors. In both VaR models the forex risk
is much the smallest, since the forex volatility is considerably lower than the volatility of the
equity risk factors.

The next example further investigates the effect that a large negative skewness has on the
normal mixture VaR estimate. It also illustrates the application of the method of moments to
the estimation of the normal mixture parameters.

EXAMPLE IV.2.21: COMPARISON OF NORMAL MIXTURE AND STUDENT T LINEAR VAR

Using the daily FTSE 100 index data from 4 January 2005 to 7 April 2008 shown in
Figure 1V.2.10, apply the method of moments to estimate the parameters for a mixture of
two normal distributions representation of the daily returns. Then, using both the maximum
likelihood and the method of moments estimate of the degrees of freedom for the Student ¢
density representation of the FTSE 100 index returns from Example 1V.2.18, compare the
Student ¢ linear VaR with the normal mixture linear VaR over a 10-day horizon, at the
0.1%, 1% and 5% significance levels. Express your results as a percentage of the portfolio
value.

SOLUTION The sample moments that we want to match are shown in Table 1V.2.25. The
sample is of daily log returns between January 2006 and April 2008.

Table 1V.2.25 Sample moments of daily returns
on the FTSE 100 index

Moment Estimate
Mean 0.012%
Standard deviation 1.097%
Skewness —0.2577
Excess kurtosis 2.9049

The application of Solver to the problem of estimating the parameters of a mixture of two
normal distributions is highly problematic. Firstly, with five parameters there would be no
unique solution even if the system were linear — and the optimization problem here is highly
non-linear. Secondly, we require a better optimization algorithm (such as the EM algorithm)
than the simple Newton or conjugate gradient methods employed by Solver. So the user needs
to ‘nurse’ the optimization through stages, trying to equate each moment in turn. Without
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going into details, | was able to match the sample and population moments to five decimal
places and the resulting parameter estimates are shown in Table 1V.2.26.4°

Table IV.2.26  Normal mixture parameters for FTSE 100 returns

FTSE 100 e M1 2 o1 o)
Daily 0.34003 —0.124% 0.082% 1.675% 0.602%
Annual ’ —31.07% 20.52% 26.49% 9.52%

We now compare the results obtained using the normal mixture distribution with the
Student ¢ VaR results from Examples 1V.2.18 and 1V.2.19. The 100a% 10-day VaR estimates
are displayed in Table 1V.2.27, for different values of a. The Student ¢+ VaR estimates ignore
the large negative skewness of the FTSE 100 returns, and as a result they tend to underes-
timate the VaR. The only Student ¢ VaR estimate that exceeds the normal mixture VaR is
the one based on the maximum likelihood estimate of the degrees of freedom, at the 0.1%
significance level.

Table IV.2.27 Comparison of normal and Student ¢ linear VaR

Significance level 0.1% 1% 5%

Normal mixture VaR 15.95% 11.40% 7.01%
Student t VaR (MLE) 17.76% 8.07% 5.71%
Student t VaR (MM) 14.67% 8.81% 5.40%

The final example in this section illustrates the application of a mixture of Student ¢ distri-
butions to the estimation of VaR, comparing the result with the normal mixture VaR. Note
that we require the standardized ¢ distribution in (1V.2.71), and Excel only has the ordinary
Student ¢ distribution function. Even this has some strange properties, so that in the example
we must set®

Vv(v—2)"T TDIST(—x, v, 1), ifx<0,
1—-Vv(v—2)"1TDIST(x,v,1), ifx>0.

EXAMPLE 1V.2.22: COMPARISON OF NORMAL MIXTURE AND STUDENT T MIXTURE VAR

Standardized t(x) =

For a=0.1%, 1%, 5% and 10%, compute the 1000% 10-day VaR of a mixture of two distribu-
tions, the first with mean 0 and volatility 20% and the second with (annualized) mean —10%
and volatility 40%. The probability weight associated with the first distribution is 75% and the
daily returns are assumed to be i.i.d. Compare two cases: in the first case the two component
distributions are assumed to be normal, and in the second case the first component distribution
is a Student ¢ distribution with 10 degrees of freedom and the second is a Student ¢ distribution
with 5 degrees of freedom.

49 These parameters differ from those shown in Table 1V.2.23 not only because the estimation algorithm is different; the historical data
period is also different. During the last six months of the data period for this example, the FTSE volatility increased as the index fell
consistently during the credit crisis, and this period is not included in the data for the previous example.

50'1n general, if X has distribution F(x) and Y =aX, a being a constant, then y has distribution function a*F(x).
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SOLUTION In each case the implicit formula (1V.2.71) is implemented in the spreadsheet,
based on the data in the question, and set up to back out the mixture VaR using Solver. Solver
is reapplied to obtain both VaR estimates each time we change the significance level (or if
we were to change any other parameter). The results, expressed as a percentage of the port-
folio value, are summarized in Table 1V.2.28. Predictably, the Student ¢+ mixture VaR is the
greater at all significance levels, and the difference increases as we move to higher significance
levels.

Table 1V.2.28 Comparison of mixture VaR estimates

a 0.1% 1% 5% 10%

Normal mixture VaR 21.61% 14.45% 8.60% 6.33%
Student t mixture VaR 36.70% 19.73% 10.78% 7.70%

EXAMPLE 1V.2.23: MIXTURE VAR IN THE PRESENCE OF AUTOCORRELATED RETURNS

Recalculate the normal mixture and Student ¢ mixture 1% 10-day VaR estimates from the
previous example when daily returns are assumed to have autocorrelation +0.25, and when
the are assumed to have autocorrelation —0.25.

SOLUTION  The calculation proceeds as before, but instead of scaling daily returns by +/10=
3.1623 for the 10-day standard deviation, we use the scale factor based on (1V.2.10). This is

0.25
= _ _ 9] —
\/10 + 20.752 [9 x0.75—-0.25(1 —0.25%)] =3.97

when the autocorrelation is 0.25, and

0.25
\/10 ~ 27555 (9% 1.25+0.25(1 - 0.25°)| =2.51.

when the autocorrelation is —0.25. Using this scaling factor for the standard deviations in
(IV.2.71), and then applying Solver to back out the VaR, we obtain the results for 1% 10-day
VaR shown in Table 1V.2.29.

Table 1V.2.29 Effect of autocorrelation on mixture VaR

0 -0.25 0 0.25
Normal mixture VaR 11.56% 14.45% 18.05%
Student t mixture VaR 15.76% 19.73% 24.68%

As when the distribution is normal, the effect of positive autocorrelation on non-normal para-
metric linear VaR will be to increase the VaR estimate, relative to the case where autocorrela-
tion is assumed to be zero; and the opposite is the case when there is negative autocorrelation.
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1V.2.9.5 Normal Mixture Risk Factor VaR

In applications of the parametric linear VaR model we use a cash-flow mapping to represent
interest rate sensitive portfolios, equity portfolios are represented by a linear factor model and
the log returns on commodity futures are a linear function of the log spot returns and the carry
cost. Then the variance of the systematic return (i.e. the return that is explained by the risk
factor mapping) is given by a quadratic form 6’26, where 6 denotes the vector of sensitivities
to the risk factors and € denotes the risk factor returns covariance matrix. There is only one
covariance matrix and in the normal linear VaR model we assume that all risk factor returns
are normally distributed.

We now extend the normal linear risk factor VaR model to the mixture framework, in the
case where there are two risk factors and each marginal risk factor return distribution is a
mixture of two normal components. In this case the risk factor covariance structure may be
captured by four covariance matrices and the portfolio return distribution will be a mixture of
four normal components.

To see why this is the case, suppose we have two risk factors X; and X, with return densities
that have correlated normal mixture distributions. The marginal densities of the risk factors are

f1Ce) = Tflf(xl;lkn, Oil) +@1- Tfl)f(x1§M12, 0?2),
fz(xz) = szf(xzﬂkzh cﬁl) +1- sz)f(x2§l1«227 022),

where f(x; L, 02) denotes the normal density function for a random variable X with mean .
and variance o2. Thus, we may assume that so that each risk factor representation has

e a ‘core’ normal density with weight 1 — 7t; in the mixture and with the lower volatility,
e a ‘tail’ normal density with weight rt; in the mixture and a higher volatility.

Since each risk factor return density has two normal components, their joint density is a
bivariate normal mixture density of the form

flxr, x0) =T F(xq, x5, R1) + (1 — ) oF (e, 223 1y, 25)
+ 71 (1 — ) F(x1, x3 3, R3) + (1 — ) (L — o) Flxy, x23104, R4),

where F(xy, x,; i, ) is the bivariate normal density function with mean vector n and
covariance matrix € and

_ (M1 _ [ P22 _ M1 _ W12
W= (Mn) e <M21) M <M22) W (H«zz) ’
0%1 01011021 0%2 02012021
01011021 051 ’ 02012021 051 ’

2 2
Q, = o1 930121022 Q, = P! 940122022
R .
03011022 05 04012022 (&

0
Il

D
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The covariance matrix €, represents the volatilities and correlation in the ‘tails’ of the two
distributions and £, represents the volatilities and correlation in the ‘core’ of the two distri-
butions. The other two matrices 2, and 25 represent the volatilities and correlation when one
risk factor is in the “core’ of its distribution and the other is in the ‘tail’.

Then the portfolio return will have a normal mixture distribution with four normal
components and parameters given by the mixing law

= (17, (1 — )7, 1 (1 —m3), 1 —m) (1 —myp)), (IV.2.75)

the component means
{0, O'py, 0'g, 0'p, ) (IV.2.76)

and the component variances
{6’910, 0'R2,0, 6’20, 9’949} , (Iv.2.77)

where 0 is the vector of sensitivities of the portfolio to the two risk factors. Hence, to estimate
the normal mixture VaR of the portfolio we apply Solver, or a similar numerical algorithm,
to (IV.2.72) when the number of normal components is four and the mixing law, means and
variances are given by (IV.2.75)-(1\V.2.77).

As the number of risk factors increases, the number of components in the normal mix-
ture distribution for the portfolio return increases. However, since the component means are
different, the portfolio return may remain quite skewed and/or leptokurtic.

EXAMPLE 1V.2.24: NORMAL MIXTURE VAR — RISK FACTOR LEVEL

A portfolio has two risk factors with percentage sensitivities to these risk factors of 0.8 and 1,
respectively. The risk factor returns have a bivariate normal mixture distribution with the mean
excess returns and volatilities shown in Table 1V.2.30. Calculate the 1% 10-day VaR of the
portfolio.

Table IV.2.30 Normal mixture parameters for risk factors

NM parameters Risk factor 1 Risk factor 2 Correlations
b1 0.02 0.03

\olatility 1 75% 65% 01 0.3
Volatility 2 15% 18% 02 0
Annual excess return 1 —300% —200% 03 0
Annual excess return 2 2% 2.5% 04 0.8

SOLUTION Using the data in Table 1V.2.27 with the sensitivity vector 6 = (0.8, 1)’ we cal-
culate the means and variances of the four components in the normal mixture distribution of
the portfolio return, using (1V.2.76) and (1V.2.77) above. Then the 1% 10-day VaR of the port-
folio is calculated in the spreadsheet, using Excel Goal Seek (or Solver) to ‘back out’ the VaR
from the formula (1V.2.72), just as in the previous examples. The result is a 1% 10-day normal
mixture VaR that is 16.88% of the portfolio’s value.
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1V.2.10 EXPONENTIAL WEIGHTING WITH PARAMETRIC
LINEAR VALUE AT RISK

Until now, when historical volatility estimates have been used they have been based on the
the equally weighted unconditional variance estimate, which was introduced and illustrated in
Section 11.3.4. For instance, denoting the portfolio return at time ¢ by », and assuming these
returns are i.i.d. with zero mean, the equally weighted sample variance based on the most
recent T returns is

T
=Ty 2, (IV.2.78)
k=1

If these returns are daily then our estimate at time ¢ of the h-day standard deviation is &,+/h.5"
A formula similar to (1V.2.78) but based on cross products rather than squared returns, yields
an equally weighted average covariance estimate. Dividing the covariance by the square root
of the product of the two variances gives the equally weighted correlation. Since the variance
and covariance of i.i.d. returns both scale with h, the correlation does not scale with the risk
horizon of the returns.

Whilst equally weighted averages are useful for estimating VaR over a long term risk hori-
zon, they have limited use for estimating VaR over a short term horizon. This is because they
provide an estimate of the unconditional parameter, and the estimate represents only the aver-
age value of the corresponding conditional parameter over the historical sample of returns.
For instance, if we use three years of data to estimate volatility, the equally weighted average
represents the average sample volatility over the last three years. This may be fine for long-
term VaR estimation, but short-term VaR estimates are supposed to reflect the current market
conditions, and not the average conditions of the past three years. For this we need a forecast
of the conditional volatility, which is time-varying, or at least we need a time-varying estimate
of volatility.

This section explains how the exponentially weighted moving average methodology may
be used to provide more accurate short term VaR estimates than the standard equally weighted
method for parameter estimation. Throughout this section all risk factors are assumed to have
i.i.d. daily returns. Hence, in our empirical examples we use the square-root-of-time rule to
scale VaR over different risk horizons.

1V.2.10.1 Exponentially Weighted M oving Averages

This section summarizes the EWMA statistical methodology as it is applied to estimating
time series of volatilities and correlations. The EWMA methodology is described in full in
Section 11.3.8.1, to which readers are referred for further information.

The EWMA formula for the variance estimate at time ¢ of a time series of returns {r,} is
most easily expressed in a recursive form, as

G=1—2Nr’  +n6%,, t=2,...,T, (IV.2.79)

51 We often apply this square-root-of-time rule for scaling standard deviations of i.i.d. returns even when returns are not normally
distributed — for instance in the Student ¢ linear VaR model. But in that case, as we have already remarked in Section 1V.2.8.1, it is
only an approximation.

52 GARCH models have time-varying conditional volatility. EWMA models give time-varying estimates of the unconditional volatility.
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where X denotes the smoothing constant, and 0 < » < 1. The EWMA volatility is obtained
by annualizing (1V.2.79) and taking the square root. For instance, if {r,} denotes a series of
daily returns and there are 250 daily returns per year, then the EWMA volatility at time ¢ is
,4/250, where &2 is given by (1V.2.79).

Figure 1V.2.12 depicts the EWMA volatility of the FTSE 100 index for two different values
of the smoothing constant. This shows that the smoothing constant captures the persistence of
variance from one time period to the next. The larger the value of %, the smoother the resulting
time series of variance estimates. The effect that a non-zero market return at time ¢t — 1 has
on the variance estimate at time ¢ depends on 1 — \, and the lower the value of X the more
reactive the variance is to market events.
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FigureIV.2.12 EWMA volatility of the FTSE 100 for different smoothing constants

Another way of viewing an EWMA estimate of volatility is as an equally weighted volatility
estimate on exponentially weighted returns. That is, we multiply the return from » periods in
the past by 2272 forn=1,...., T where T is the sample size. Then the EWMA variance
estimate at time t is the equally weighted variance estimate based on the series A" 2/%r,_ n=
1,..., T, butinstead of dividing by T, we multiply by 1 — %.5* Thus an alternative expression
to (IV.2.79), valid only as T — o0, is

=L =N M, N ). (1v.2.80)

t

Butsince 0 < <1, A" — 0 as k — oo, and so as returns move further into the past they will
have less influence on the EWMA estimate (1V.2.80).

53 The starting value o{ required for the recurrence may be set arbitrarily, or equal to r%, or set to some unconditional variance for the
returns.

5 Because 1+A+124+23+...=1—-n"L
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The EWMA covariance of two contemporaneous time series of returns {r,,} and {r,,} may
also be expressed in a recursive form, as

6'12, = (1 — )\.)TLt,]_TZ,[,]_ + )\812,,,1, t= 2, ..., T. (|V281)

The EWMA correlation is obtained by computing three series based on the same value of
the smoothing constant, two EWMA variances that are estimated using (IV.2.79) for each
of the returns, and the EWMA covariance (1V.2.81). Then the covariance estimate at time ¢ is
divided by the square root of the product of the variance estimates at time ¢, and the result is
the EWMA correlation estimate at time ¢.

As an example, we estimate the EWMA correlation between the NASDAQ 100 technology
and S&P 500 indices, using daily log returns based on closing index prices.*® The evolution
of the two indices is depicted in Figure 1V.2.13, where the effects on the NASDAQ 100 of
the technology bubble at the turn of the century are clearly visible. Then, using daily log
returns on the closing prices, the spreadsheet for Figure 1V.2.14 computes the EWMA index

volatilities for any value for the smoothing constant. For the graph shown here we have used
the RiskMetrics™ daily smoothing constant of 0.94.
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Figure 1V.2.13 NASDAQ 100 and S&P 500 indices

Next we compute the daily EWMA covariance, using (1V.2.81) with the same value of X,
i.e. 0.94, for the two volatilities shown in Figures 1V.2.14. Dividing this covariance by the
square root of the product of the two daily variances gives the EWMA correlation. The result-
ing correlations are compared in Figure 1V.2.15. In the spreadsheet for this figure readers may
like to change the value of the smoothing constant and see the smoothing effect on the EWMA
correlation as \ increases. Notice that, for any choice of \, the average of the EWMA corre-

lations over the sample is approximately 82%, i.e. the same as the equally weighted average
correlation estimate over the entire sample.

55 Data were downloaded from Yahoo! Finance, symbols * GSPC and “NDX.
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FigureIV.2.14 EWMA volatilities of NASDAQ and S&P 500 indices
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Figure 1V.215 EWMA correlations of NASDAQ and S&P 500 indices

1V.2.10.2 EWMA VaR at the Portfolio L evel

The previous subsection demonstrated that EWMA volatilities and correlations are more
risk sensitive than equally weighted average estimates of the same parameters. That is, they
respond more rapidly to changing market circumstances, particularly for low values of the
smoothing constant \. It is not easy to make equally weighted average parameter estimates risk
sensitive, because as the sample size over which the average is taken decreases, the estimates
become more seriously biased by ghost features of extreme market movements in the sample.*

56 A full discussion of the reason for these ghost features, and the effects of these features on equally weighted moving average

estimates, is given in Section 11.3.7, and the interested reader is referred there for further information.
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In this section we present some empirical examples to illustrate the effect of using EWMA
on VaR estimation at the portfolio level, compared with VaR based on equally weighted esti-
mates of the portfolio volatility. The i.i.d. normal assumption is retained, and the portfolio
value is assumed to be a linear function of the prices of its assets or risk factors. Hence, the
EWMA daily VaR estimate may be scaled to longer horizons using the square-root-of-time
rule.®

Given an EWMA estimate &, of the daily standard deviation of the portfolio return or P&L
at time ¢, when the VaR is measured, the normal linear EWMA estimate of the 100a% h-day
VaR is®

EWMA VAR, ., = ® {1 — a)6,vh. (1V.2.82)
We illustrate the application of this formula in the next example.

EXAMPLE 1V.2.25: EWMA NORMAL LINEAR VAR FOR FTSE 100

Use an EWMA volatility series to estimate the 100a% 10-day normal linear VaR for a position
on the FTSE 100 index on 18 April 2008. How does the choice of smoothing constant affect
the result?

SOLUTION We do not need a long period of historical data to compute the EWMA VaR.
The spreadsheet for this example uses data from January 2006 until 18 April 2008, i.e. 580
daily returns.®® The formula (1V.2.82) is implemented in the spreadsheet and the results are
displayed in Table 1V.2.31. In the last column we show the equally weighted VaR estimate
over the whole sample of 580 observations, which is identical to the EWMA estimate with a
smoothing constant of 1.

Table 1V.231 EWMA VaR for the FTSE 100 on 18 April 2008

Significance level Lambda

0.9 0.95 0.99 1
5% 7.42% 8.08% 7.81% 5.71%
1% 10.49% 11.43% 11.05% 8.07%
0.1% 13.93% 15.19% 14.86% 10.73%

As usual, all VaR estimates increase with the significance level. Also, at each significance
level, each of the EWMA volatility estimates are greater than the equally weighted VaR esti-
mate shown in the last column. This is because April 2008 was a fairly volatile period for the
FTSE 100, as the effects of the credit crunch were still taking their toll on the financial sector
of the UK economy. But the most interesting point to note about these results is that lower
values of lambda do not necessarily give higher or lower VaR estimates, just because they use
only very recent data. In fact, in our case the estimates based on » = 0.95 are the greatest, at
each significance level. This is because the FTSE 100 index was also very volatile during the

57 However, we emphasize that it is not appropriate to scale an EWMA VaR to a time horizon longer than a month or so. The raison
d’étre for EWMA estimation of portfolio volatility is to capture the current market conditions, not a long term average.

58 Since we do not apply EWMA VaR for long risk horizons, we can exclude the mean adjustment from the formula without much
loss of accuracy.

59 With % = 0.94, the exponential weight on a return 580 days ago is 0.942%° = 0.000000016 and even with x = 0.99 the exponential
weight on a return 580 days ago is only 0.99%%° ~0.05.
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latter half of 2007, and not just in the first quarter of 2008. Of the three values used for 1, it
seems that setting » = 0.95 maximizes the total weight put on these more volatile data. Results
for other values of X\ and for different significance levels and risk horizons may be obtained
by changing the parameters in the spreadsheet.

IV.2.10.3 RiskMetrics™ VaR M ethodology

When the systematic VaR of a large portfolio is disaggregated into stand-alone or marginal
component VaRs, we could base the systematic VaR on the normal linear VaR formula
(IV.2.15). For a short-term VaR estimate to be more risk sensitive, the covariance matrix in
this formula may be based on an EWMA covariance matrix, instead of using equally weighted
averages of squared returns and their cross products. However, unless we apply the orthogonal
EWMA methodology, which is described in Section 11.3.8.7, the smoothing constant must be
the same for the variance and covariance estimates in the matrix. Otherwise the matrix need
not be positive semi-definite.%

The RiskMetrics group provides daily estimates of volatilities and correlations, summa-
rized in three very large covariance matrices, with risk factors that include most commaodities,
government bonds, money markets, swaps, foreign exchange and equity indices for over 40
currencies. The three covariance matrices provided by the RiskMetrics group are as follows:®

1. Regulatory matrix. An equally weighted average matrix based on the last 250 days.

2. Daily matrix. An EWMA covariance matrix with . = 0.94 for all elements.

3. Monthly matrix. An EWMA covariance matrix with » = 0.97 for all elements and then
multiplied by 25.5?

In addition, the group provides VaR software based on these data and a number of documents,
including a technical document, which describes its portfolio mapping procedures and the
VaR methodology.

In the next example we use a portfolio of US stocks in the S&P 500 and NASDAQ 100
indices to illustrate the application of the RiskMetrics methodology and the decomposition of
systematic VaR into stand-alone components.

EXAMPLE 1V.2.26: COMPARISON OF RISKMETRICS™ REGULATORY AND EWMA VAR

Consider a large portfolio of US stocks having a percentage beta with respect to the S&P 500
index of 1.1 and a percentage beta with respect to the NASAQ 100 index of 0.85. Assume that
$3 million is invested in the S&P 500 stocks and $1 million is invested in the NASDAQ 100
stocks. Compare the 1% 10-day normal VaR of this portfolio on 18 April 2008, based on the
RiskMetrics regulatory matrix and based on the daily matrix, and in each case disaggregate
the VaR into S&P 500 and NASDAQ 100 stand-alone VaR.

SOLUTION We use the data shown in Figure 1V.2.16, starting on 3 January 2006 and ending
on 18 April 2008.%® The NASDAQ 100 index is on the left-hand scale and the S&P index is
on the right-hand scale.

60 The reasons why correlation and covariance matrices must be positive definite are described in Section 1.2.4.
61 The methodology used to construct these matrices is described in full and illustrated in Section 11.3.8.6.

62 That is, using the square-root-of-time rule and assuming 25 days per month.

83 Since 0.97%% is less than 0.0005, 500 data points are adequate, and we have 576 daily returns.
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Figure 1V.2.16 NASDAQ 100 and S&P 500 indices, 2006-2008

The EWMA variances and covariances are estimated as explained above, but we are not
interested in a time series of variances and covariances, only in the covariance matrix on 18
April 2006, because we are only estimating VaR on this day. The volatilities and correlation
estimated on 18 April 2006, based on an EWMA with % = 0.94 and based on an equally
weighted average of the last 250 returns, are shown in Table 1V.2.32, and the resulting annual
covariance matrices are shown in Table 1V.2.33. Note that the US was still very much feel-
ing the effects of the credit crisis in April 2008 and so, being based on more recent data, the
EWMA volatilities and correlations are higher than the RiskMetrics regulatory estimates.

Table 1V.2.32 \olatilities of and correlation between S&P 500 and NASAQ 100 indices

S&P 500 volatility NDX volatility Correlation
EWMA 22.81% 28.03% 94.91%
Regulatory 19.63% 22.89% 89.88%

Table 1V.2.33  Annual covariance matrix based on Table 1V.2.32

S&P 500 NDX
EWMA
S&P 500 0.05205 0.06069
NDX 0.06069 0.07857
Regulatory
S&P 500 0.03853 0.04038
NDX 0.04038 0.05239

The spreadsheet for this example implements the normal linear VaR formula (1V.2.15)
where €, is the h-day matrix that is derived from the relevant annual matrix in Table 1V.2.33,
using the square-root-of-time rule, and 0 is the vector of nominal portfolio betas, that is,
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($3.3m, $0.85m)’. We assume the excess return on each index is zero. Since 0 is expressed in
value terms, the VaR will also be expressed in value terms.

The stand-alone VaRs are estimated using the individual volatilities shown in Table 1V.2.32,
each scaled to a 10-day standard deviation using the square-root-of-time rule. Since both
volatility estimates are lower when based on an equally weighted average over the last 250
days, we expect the stand-alone VaRs to be lower when they are based on the regulatory
matrix. However, since the regulatory correlation estimate is also lower, the total systematic
VaR could be greater than or less than the corresponding EWMA estimate, depending on
the portfolio composition. The results for the portfolio given in the question are shown in
Table 1V.2.34.%

Table IV.2.34 RiskMetrics VaR for US stock portfolio

Stand-alone VaR Systematic VaR
S&P 500 NDX Total
EWMA $350,284 $110,852 $456,833
Regulatory $301,377 $90,522 $384,789

In both cases the sum of the stand-alone VaRs exceeds the total systematic VaR, due to
the usual diversification effect in the total VaR. However, since the two risk factors have a
high correlation, this diversification effect is small. Both stand-alone VaRs, and the total VaR
estimate, are greater when based on the EWMA covariance matrix, because this captures
the current, more volatile market circumstances, whereas the regulatory covariance matrix is
based on an average over 1 year.

The Basel regulations that were introduced in 1996, specified that internal models which are
used to calculate the market risk capital requirements must use at least 250 days of historical
data. Hence the EWMA methodology, which effectively uses less than 250 days, due to the
exponential weighting of returns, has been disallowed. However, following the credit crisis,
in July 2008 the Basel Committee proposed extra capital charges for equity and credit spread
risks, precisely because the use of 250 days or more of historical data is now thought to pro-
duce VaR estimates that are insufficiently risk sensitive. It is unfortunate that the Committee
took so long to realise this fact. It is also unfortunate that the Committee believe that imposing
additional capital charges is the appropriate response to the credit and banking crises.

IV.2.11 EXPECTED TAIL LOSS(CONDITIONAL VAR)

Section 1V.1.8.2 introduced expected tail loss, also called conditional VaR. The ETL is defined
by (IV.1.32) and its interpretation is the expected loss (in present value terms) given that
the loss exceeds the VaR. The ETL risk metric is more informative than VaR, because VaR
does not measure the extent of exceptional losses. VaR merely states a level of loss that we are
reasonably sure will not be exceeded: it tells us nothing about how much could be lost if VaR is
exceeded. However, ETL tells us how much we expect to lose, given than the VaR is exceeded.
Clearly ETL gives a fuller description of the risks of a portfolio than just reporting the VaR

64 Readers may change the portfolio composition in the spreadsheet and see the effect on the VaR.
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alone. Since ETL is also a coherent risk metric (see Section 1V.1.8.3) ETL is sub-additive
even when VaR is not.% This means that ETL is a better risk metric to use for regulatory and
economic capital allocation, a subject that we shall return to in Chapter 8.

We now present a mathematical description of ETL. Let X denote the discounted h-day
return, and set

VaRhoL = X,

where x, denotes the a quantile of the distribution of X, i.e. P(X < x,) = a.. The definition of
ETL, when it is expressed as a percentage of the portfolio value, is

ETL,(X)=—-EX|X <xq4)-

Since the ETL is a conditional expectation, it is obtained by dividing the probability weighted

average of the values of X that are less than x, by P(X < x,). But P(X <x,) = a so if X has
density function f(x) then

ETLQ(X)z—OL_l/xf(x) dx. (IV.2.83)

In this section we derive formulae for ETL when VaR is estimated using the parametric

linear model, beginning with the normal linear model and then extending this to Student ¢

linear ETL, to normal mixture linear ETL and to Student t mixture ETL. We shall express the
ETL as a percentage of portfolio value throughout.

IV.2.11.1 ETL intheNormal Linear VaR Model

Let the random variable X denote a portfolio’s discounted h-day return. If X ~ N(j,, 62) then
ETL,.(X) =a"¢(® () 0, — . (1V.2.84)

where ¢ and @ denote the standard normal density and distribution functions. Hence, ® ()
is the o quantile of the standard normal distribution and ¢(®~Y(a)) is the height of the standard
normal density at this point.

To prove (1V.2.84) we first calculate the ETL of a standard normal variable Z. Since the
standard normal density function is

1
¢(z) = E EXp(—%ZZ) )

we have
> o) ) @Y
ETL(Z)=—a"" / zQ(z)dz=— (v 21 0() / zexp(— %zz) dz
oo “oo (1V.2.85)
1 &Y
=ao! [E exp(— %zz)i| B =a (P ().

55 When VaR is estimated using historical or Monte Carlo simulation, it need not be sub-additive.



130 Value-at-Risk Models

Now we use the standard normal transformation to write X in the form
X=Zo,+m, Z~N(0,1).

By the definition (1V.2.83) of ETL,%
ETL,.(X) =ETL(Z)o}, — W4,

and this proves (1V.2.84).

EXAMPLE IV.2.27: NORMAL ETL

Suppose a portfolio is expected to return the risk free rate with a volatility of 30%. Assuming
the returns are i.i.d., find the 1% 10-day parametric linear VaR and ETL as a percentage of the
portfolio’s value.

SOLUTION The 10-day standard deviation is 0.3 x 4/10/250 = 0.3/5 = 0.06. So the 1%
10-day normal ETL is

ETLl0.0.0l(Xlo) = 0.01_1({)(Z0A01) x 0.06=0.06 x (9(232635) =15.99%.

That is, the 1% 10-day normal ETL is about 16% of the portfolio’s value. This should be
compared with the 1% 10-day normal linear VaR, which is only 13.96% of the portfolio’s
value. By definition, the ETL is always at least as great as the corresponding VaR, and often
it is much greater than the VaR.

1V.2.11.2 ETL inthe Student t Linear VaR M odel

Again let the random variable X denote a portfolio’s discounted h-day return. In this section
we show that if X has a Student ¢ distribution with mean w,, standard deviation o, and v
degrees of freedom then

ETLon(X) =00 = 1) (v =2+ x,(0)?) fu(xa (V)04 — Wi, (1V.2.86)

where x,(v) denotes the a quantile of the standardized Student ¢ distribution (i.e. the one
with zero mean and unit variance) having v degrees of freedom, and f, (x,(v)) is the value
of its density function at that point. The standardized Student ¢ density function is derived in
Section 1.3.3.7 as

fim) =(v=2)m) T (2)71 r (‘) “ZL 1) (14 (v—2yh2) 2 (IV.2.87)

The result (1V.2.86) follows if we can prove that the ETL in a standardized Student ¢
distribution with v degrees of freedom is given by

ETLyou(T) =a'(v — 1) (v — 24 x,(v)?) fu (xa (V). (1V.2.88)

56 Note that we subtract p. because of the minus sign in the definition of ETL.
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where T denotes a standardized Student ¢ variable with v degrees of freedom. By the definition
(1V.2.83) of ETL, we need to evaluate

xq (V)

/ x fu(x) dx.

—00

To shorten our notation, note that we may write (1V.2.87) more briefly as

fule) =A(l+as?)

where
A=(v=2)1) T2 T ((v+1)/2),a= (v—2) " and b=—(1+v)/2.
Then,
xq (V) xq (V) A B
/ xfo(x)dx=A / x(1 4 ax?)t dx = 2 /ybdy,
a

where we have sety =1+ ax? and B=1+ (v — 2) 'x,(v)?. Then

B

, Bb+l 2B(17\J)/2

b+ 1—v
and
A =f,(xa(v))BE2,
So
xa (V)
(xg B(l+\1)/2 28(1—\))/2
/ X‘f\)(x) dx:f (2(5)\)1)2)1 X 1—v :_(V—l)_l(\)—Z)va(X(x(\))).

—00

Now substituting in the above for B and using (1V.2.83) yields (1V.2.88).

EXAMPLE IV.2.28: STUDENT T DISTRIBUTED ETL

As in the previous example, suppose that a portfolio is expected to return the risk free rate
with a volatility of 30%, but now suppose that its returns are i.i.d. with a Student ¢ distribution
with v degrees of freedom. Find the 1% 10-day Student ¢ VaR and ETL, as a percentage of the
portfolio’s value, for v=>5, 10, 15, 20 and 25.

SOLUTION We base the calculations in the spreadsheet on (IV.2.63) for the VaR, and
(1Vv.2.88) for the ETL. Thus we calculate the standardized ¢ ETL, and transform the stan-
dardized t ETL to obtain the ETL for our return distribution using (1V.2.86). The results are
summarized in Table 1V.2.35 and, for comparison, the last column of this table reports the
normal VaR and ETL for the same portfolio, with the results obtained from the previous
example. For highly leptokurtic distributions (i.e. for low values for the degrees of freedom)
the ETL is far greater than the VaR. For instance, the ETL is almost twice as large as the VaR
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Table 1V.2.35 VaR and ETL for Student ¢ distributions

v 5 10 15 20 25 oo (Normal)
VaR 15.64%  14.83%  1454%  14.39%  14.30% 13.96%
ETL  30.26%  20.00%  18.12%  17.40%  17.03% 15.99%

under the s distribution. But as the degrees of freedom increase, the Student ¢ distribution
converges to the normal distribution, so VaR and ETL converge toward to the normal VaR
and ETL.

1V.2.11.3 ETL intheNormal MixtureLinear VaR Model

First suppose that a portfolio’s discounted h-day return X has a normal mixture distribution
G, with zero means in the components where

nz(nla"'ann)
is the mixing law and the component variances are 62 = (o2,, ..., 02,). We set
1
Xoq = Go (o)

so that —x, is the 1000% h-day VaR under the zero-mean normal mixture. Write the density
function as ), wfi(x), where each f;(x) is a zero-mean normal density with standard
deviation o;;,. Then, by extending the argument used in the normal case, we have

ETL, () =—a" Y / of (x)d.
i=1 s

Using an argument similar to that in (1V.2.85), it can be shown that
/ x fi(x) dx = —Gih(p((ii;lxd) ,

where ¢ is the standard normal density function. Hence, we have

n

ETL, () =a™" ) (moa¢(0;"x)).-
i=1
Now suppose a portfolio’s discounted h-day is expected to return are represented by a mixture
of n normal distributions with distribution function G. That is, X ~ NM(x, p,, ¢2), where xt
and o? are defined above and the component means are ., = (i, - - - , L) Then the expected
value of the normal mixture is >, m;us and, again by extending the argument used in the
normal case, we have

ETL.(O =0 (100(0; ) — Y Tulta, (1V.2.89)

i=1 i=1

where —x, is the 1000% h-day VaR under the corresponding zero-mean normal mixture.
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EXAMPLE IV.2.29: NORMAL MIXTURE ETL

As in Examples 1V.2.27 and 1V.2.28, suppose that a portfolio is expected to return the risk free
rate with a volatility of 30%, but now suppose that its returns are i.i.d. with a normal mixture
distribution with discounted mean returns of zero, but with two normal components having
different volatilities: with probability 0.2 the volatility is 60% and with probability 0.8 the
volatility is 15%. Find the 1% 10-day normal mixture VaR and ETL as a percentage of the
portfolio’s value.

SOLUTION We remark that the volatility of the normal mixture is the same as that in the
previous two examples, since

v/0.2 x 0.62 + 0.8 x 0.152 = 30%.

Hence, we can compare the results with those in the previous examples for the normal and
Student ¢ ETL. First the spreadsheet uses Excel Solver or Goal Seek optimizer to back out
the 1% 10-day normal mixture VaR using formula (IV.2.72). The normal mixture VaR is
19.74% of the portfolio’s value. This is significantly greater than the normal VaR found in
Example IV.2.27.

The normal mixture ETL is also much greater than the normal ETL derived in
Example 1V.2.27. A volatility of 60% corresponds to a 10-day standard deviation of 0.12
and a volatility of 15% corresponds to a 10-day standard deviation of 0.03. Thus, applying
(1V.2.89), we have

0.1974
0.03

0.1974
0.12

ETL,(X)=0.01" (0.2 X (p(—

) x 0.12+0.8 x <p<— ) X 0.03) =24.75%

So under the normal mixture distribution with an overall volatility of 30%, the 1% 10-day ETL
is nearly 25% of the portfolio value, compared with approximately 16% if the distribution
were normal with volatility 30%.

1V.2.11.4 ETL under aMixture of Student t Distributions

It can be shown that when the return distribution is assumed to be a mixture of Student ¢
distributions with different means, variances and degrees of freedom as in Section 1V.5.2.7,
then®”

n

ETL, . (X) = a_lz(ni(vi - (\’i -2+ ti(x(v)z)fv,- (tict("))cih) - Z T, (1V.2.90)
i=1 i=1
where
b (9) = x, (V) v, (v — 2)0, "
and x, (v) is minus the Student + mixture VVaR. Here v denotes the vector of degrees of freedom

for each component in the mixture. The next example illustrates the implementation of this
formula, and compares the results with those in the previous examples.

57 The details of this calculation are lengthy and are therefore omitted, but the arguments are similar to those used to derive the
Student ¢ ETL and the normal mixture ETL in the previous subsections.
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EXAMPLE 1V.2.30: STUDENT T MIXTURE ETL

As in Examples 1V.2.27-1V.2.29, suppose that a portfolio is expected to return the risk free
rate with a volatility of 30%, but now suppose that its is expected to return are i.i.d. with a
Student ¢ mixture distribution. Both Student ¢ distributed components have a discounted mean
return of zero, but the two components have different volatilities and degrees of freedom: with
probability 0.2 the distribution has 5 degrees of freedom and a volatility of 45% and with
probability 0.8 the distribution has 10 degrees of freedom and volatility of 25%.% Find the
1000% h-day VaR and ETL as a percentage of the portfolio’s value for « =0.1% and 1% and
h=14and 10. Compare your results with those obtained above, using a normal, normal mixture
and individual Student ¢ distributions.

SOLUTION Table I1V.2.36 compares the 100a% h-day VaR and ETL from all the distributions
considered in these examples, for the different values of o and h.%° The normal VaR and ETL
are the smallest, which is as expected, due to the high significance level of the VaR and the
leptokurtic nature of the other distributions. Comparing the normal mixture with the individual
Student ¢ estimates, the normal mixture VaR exceeds both the Student ¢+ VaR estimates, but
the normal mixture ETL estimates lie between the two Student ¢+ ETL estimates. Although
greater than the ETL estimates based on 10 degrees of freedom, the normal mixture ETL is
substantially less than the Student ¢ ETL with 5 degrees of freedom.”™ The Student ¢ mixture
VaR is less than the normal mixture VaR at the 1% level, but greater than the normal mixture
VaR at the 0.1% level, and the Student ¢ mixture ETL is greater than the normal mixture ETL
at both the 1% and 0.1% levels.

Table 1V.2.36 VaR and ETL for normal, Student ¢ and mixture distributions

h=1 Normal t1o ts NM t Mixture
a=1% VaR 4.41% 4.69% 4.95% 6.24% 6.05%
ETL 5.06% 6.33% 9.57% 7.83% 9.16%

a=0.1% VaR 5.86% 7.03% 8.66% 9.78% 11.51%
ETL 6.39% 9.46% 17.48% 10.97% 23.92%

h=10 Normal t10 ts NM t Mixture
a=1% VaR 13.96% 14.83% 15.64% 19.74% 19.15%
ETL 15.99% 20.00% 30.26% 24.75% 28.96%

a=0.1% VaR 18.54% 22.24% 27.39% 30.91% 36.39%
ETL 20.20% 29.91% 55.28% 34.68% 75.62%

The above example shows that it is not only the excess kurtosis that determines the ETL.: it
is also very much influenced by the tail behaviour. The tails of a normal mixture distribution

88 With this choice the square root of the probability weighted sum of the variances is 30%, so the overall volatility is similar to that in
the previous examples. Readers may like to change the volatilities in the spreadsheet to 60% and 15%, to compare the result with the
previous example (remembering to reapply Solver each time the parameters are changed). Clearly both VaR and ETL will be much
greater than even the normal mixture VaR and ETL, due to the leptokurtosis of the component distributions.

%9 The results for the normal, individual Student t and normal mixtures are obtained using the spreadsheets from the previous examples,
and for the individual Student ¢ VaR estimates we assume the volatility is 30%.

70 This happens even though the excess kurtosis in the Student ¢ distribution with 5 degrees of freedom is 6, whereas that of the normal
mixture is 6.75.
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decline exponentially, but the tails of a Student ¢ distribution decline more slowly than this.
Hence, when the two distributions have similar excess kurtosis, the normal mixture ETL will
be lower than the Student ¢t ETL.

IV.2.12 CASE STUDY: CREDIT SPREAD PARAMETRIC LINEAR
VALUE AT RISK AND ETL

We end the chapter with a short case study on estimating VaR and ETL for a highly non-normal
and autocorrelated risk factor. The purpose of the study is to highlight the huge model risk that
arises from the choice of VaR model. That is, we show that very different VaR estimates can
be obtained even when we fix the same:

e broad methodology — i.e. the VaR estimates are based on different parametric linear
VaR models;

e sample data — we shall use the same sample for all estimates;

e risk factor model — we consider the VaR and ETL from an exposure to a single credit
spread risk factor.

IV.2.12.1 TheiTraxx Europe Index

The risk factor we have chosen for this study is the iTraxx Europe 5-year index. In June
2004 the iBoxx and Trac-X credit default swap (CDS) indices merged to form the Dow Jones
iTraxx index family, which consists of the most liquid single-name credit default swaps in the
European and Asian markets. As well as representing an important risk factor for interest rate
sensitive portfolios, the iTraxx indices for maturities of 3, 5, 7 and 10 years are traded over the
counter (OTC), the 5- and 10-year maturities being the most liquid. Also, many major banks
have been entering OTC trades on iTraxx options during the last few years. Their clients
include hedge funds, proprietary trading desks, insurance companies, investment managers
and index CDS traders who use options for the risk management of their positions. In March
2007 Eurex, the world’s largest derivative exchange, launched exchange traded futures and
will soon introduce other credit derivative products on iTraxx indices.

The main Europe index series, which is shown in Figure 1V.2.17, is an equally weighted
CDS spread, measured in basis points, and based on 125 single firm investment grade CDSs.
Every six months a new series for each of the iTraxx indices is introduced in which defaulted,
merged, sector changed or downgraded entities are replaced by the next most liquid ones. We
splice the older series together with the most recent series to produce the data shown in the
figure.

Figure 1V.2.17 shows the iTraxx index’s evolution, and its daily changes between 21 June
2004 and 10 April 2008.™ The effects of the credit crunch that was precipitated by the sub-
prime mortgage crisis in the US in the latter half of 2007 are clearly visible. In June 2007
credit spreads were at a historical low, having been trending down for several years. However,
by mid-March 2008, with the onset of the crisis, the iTraxx Europe spread for investment

"L The index itself is depicted by the black line and is measured on the right-hand scale, while the grey line, measured on the left-hand
scale, represents the daily changes in the index. All units are basis points.
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Figure 1V.2.17 iTraxx Europe 5-year index

grade CDSs rose from less than 3 basis points to an unprecedented high of over 140 basis
points. Then, by the beginning of April 2008, the index fell to less than 60 basis points.

Table 1V.2.37 shows the sample statistics, with approximate standard errors, and the ratio
of the statistic to its standard error, based on all 970 data points. All statistics except the
mean appear to be highly significant, and in particular we have significant negative skewness,
positive excess kurtosis and positive autocorrelation.

Table IV.2.37 Sample statistics for iTraxx Europe 5-year index

Sample statistics Estimate Standard error Ratio
Mean 0.0242 0.0772 0.31
Standard deviation 2.4037 0.0012 1940
Skewness —1.4356 0.1926 —7.45
Excess kurtosis 36.9630 0.7706 47.97
Autocorrelation 0.1079 0.03192 3.38

The annualized volatility of the index depends on the assumption made about the dynamics.
Based on the i.i.d. assumption, it is

/250 x 2.4037 = 38 basis points per annum.

But the autocorrelation of 0.1079 is positive and significant, and using the autocorrelation
adjusted scaling factor (1V.2.10) we obtain a higher volatility, of

/298 x 2.4037 = 41.5 basis points per annum.

Thus we expect that when the sample autocorrelation is taken into account the VaR and ETL
estimates will be higher than when we assume the daily changes are i.i.d.
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1V.2.12.2 VaR Estimates

We shall estimate the VaR and ETL for a simple linear exposure, with a PV01 of €1000, to
the daily changes in the iTraxx Europe 5-year index. Using the P01 approximation described
in Section 1V.2.3.2, we see that this represents a cash flow at 5 years of approximately €2.5
million.

Different VaR and ETL estimates will be based on the normal, Student ¢ and normal mixture
models that we have introduced in this chapter. Our focus is on the model risk arising from
the choice of risk factor distribution, so we shall base all the estimates on the same, objective
sample data. That is, we use all the data on iTraxx index changes shown in Figure 1V.2.17.
There are 970 daily changes, covering almost 4 years.

When estimating the 1% 10-day VaR and ETL, we consider two assumptions about the
index dynamics: that daily changes are (a) i.i.d. and (b) autocorrelated. Thus, using exactly
the same data in each case, we obtain six different estimates of the parametric linear VaR
and six corresponding estimates of the ETL, over a risk horizon of 10 days and at the 99%
confidence level.

The estimation of the model parameters is based on the method of moments. For the Student
t degrees of freedom we follow Example 1V.2.18, and for normal mixture parameters we use
the same methodology as that described in Section 1V.2.8.3 and applied in Example 1V.2.21.7
The method of moments estimate of the Student ¢ degrees of freedom is 4.1623, which matches
the sample excess kurtosis of 36.963. But note that the skewness is assumed to be zero under
the Student ¢ distribution.

The mixture distribution assumes only two components, one to represent the stable down-
ward trending regime which prevailed most of the time prior to the credit crisis, and another
to represent the volatile regime where credit spreads have the tendency to jump up rapidly and
jump down even more rapidly. The estimated parameters, quoted in basis points per annum,
are displayed in Table 1V.2.38.

Table 1V.2.38 Normal mixture parameter estimates: iTraxx
Europe 5-year index

T (151 W2 (<51 02

0.06483 —308.92 27.86 142.47 10.36

The VaR and ETL estimates are obtained in the spreadsheet labelled ‘VaR and ETL’ in the
case study workbook, using the methodology described in Sections 1V.2.2 and 1V.2.8, and
the results are summarized in Table 1V.2.39. The VaR estimates range from €17,683 for the
normal i.i.d. VaR model, to €43,784 for the normal mixture model with the autocorrelation
adjustment. Similarly, the ETL estimates range from €20,259 for the normal i.i.d. VaR model,
to €48,556 for the Student + model with the autocorrelation adjustment.

All the estimates are based on exactly the same data, but the assumptions made by the nor-
mal i.i.d. model are clearly not justified for the daily changes in the iTraxx index. The normal
i.i.d. VaR model ignores not only the autocorrelation, but also the large negative skewness

72 We do not consider the Student t mixture since the parameters for this distribution need to be estimated by the EM algorithm, which
is beyond the scope of Excel. See Section 1.5.4.3 for further details.
73 We have used square-root-of-time scaling to quote these parameters in annual terms in the table.



138 Value-at-Risk Models

Table 1V.2.39 VaR and ETL estimates for iTraxx
Europe 5-year index

VaR ETL
Normal
ii.d. €17,683 €20,259
Autocorrelation €19,151 €21,941
Student t
ii.d. €20,287 €44,814
Autocorrelation €21,991 €48,556
Normal mixture
ii.d. €41,375 €43,876
Autocorrelation €43,784 €47,522

and the extremely high excess kurtosis (of almost 37 — see Table 1V.2.37); instead both are
assumed to be zero.

The Student t model has a high ETL, like the normal mixture model, but the VaR estimates
based on the Student ¢ distribution are much lower than those from the normal mixture. This
is because the large negative skewness, which is ignored by the Student ¢ model and is only
captured by the normal mixture model, increases the VaR significantly.

The model that makes the most appropriate assumptions is the autocorrelated normal mix-
ture model. This is able to capture all the features of the data, and in particular, it captures
the two different regimes in credit spreads during the data period. Therefore the VaR and ETL
estimates based on this model are, amongst all the estimates reported in Table 1V.2.39, the
most representative of the historical sample.

IV.2.13 SUMMARY AND CONCLUSIONS

The parametric linear VaR model is applicable to all portfolios except those containing
options, or any other instruments with non-linear price functions. If we assume the portfolio
returns have either a normal distribution or a Student t distribution it is possible to derive VaR
as an explicit solution to an analytic formula. It is also possible to back out the VaR from
a formula, using a simple numerical algorithm (such as Excel’s Goal Seek or Solver) under
the assumption that the portfolio return has a mixture of normal or Student ¢ distributions.
All these formulae, and the corresponding ETL formulae, have been derived in this chapter,
and we have provided a very large number of numerical examples and empirical illustrations
based on different types of linear portfolios.

The analytic VaR formulae hold for any confidence level and over any risk horizon.
The general formulae contain an adjustment for the case where the portfolio is expected
to grow at a rate different from the discount rate, but this adjustment is very small except
for long risk horizons and when a portfolio has an expected return very different from the
discount rate.

We do not need to assume the returns are i.i.d. It is also possible to adjust the general para-
metric linear VaR formula to account for autocorrelation in log returns. When the daily log
returns are autocorrelated an adjustment needs to be made to the h-day standard deviation.
No adjustment is required for the discounted expected return, if this is included in the VaR
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estimate. With positive or negative autocorrelation the h-day standard deviation is no longer

vhao, where o is the standard deviation of daily log returns, but \/Zo where h > h for posi-
tively autocorrelated daily log returns and h < h for negatively autocorrelated daily log returns.
Hence positive or negative autocorrelation can result in a significant increase or decrease in
h-day VaR, even for short risk horizons.

When the portfolio has a discounted expected return of zero, parametric linear VaR behaves
like volatility and so its aggregation rule can be derived from the rule for the variance of a
sum. We first examined the disaggregation of the total VaR of a portfolio into a systematic
VaR component that is explained by the mapping to risk factors, and a specific VaR or residual
component. Our empirical examples here focused on the decomposition of the VaR for a stock
portfolio into the systematic VaR due to the market risk factors, and a residual VaR.

Further, systematic VaR can be decomposed in two different ways. The first is the decom-
position of systematic VaR into stand-alone VaR components that are due to each type of risk
factor. Thus we have equity VaR, interest rate VaR, credit spread VaR, forex VaR, commodity
VaR, and so forth. The stand-alone VaRs represent the risk taken by each individual trading
activity without allowing for any diversification effects from other trading activities in the
same firm. But when we measure VaR at an aggregate level, we take account of diversifica-
tion. Hence, the sum of the stand-alone VaRs is not equal to the total systematic VaR. In fact,
when VaR is measured by the parametric linear model, the sum of the stand-alone VaRs is
always greater than or equal to the total systematic VaR. That is, parametric linear VaR is sub-
additive. We have also shown how the total systematic VaR can be decomposed into marginal
VaR components which are additive. Thus marginal VaRs are useful for the allocation of real
capital which (unlike regulatory or economic capital) must be additive.

In the context of the normal linear VaR model we have derived simple formulae that may
be applied to estimate the stand-alone and marginal VaR, and the corresponding ETL, for any
given risk factor class. Another formula which, like marginal VaR, is based on the gradient
vector, is derived for the incremental VaR that measures the impact of a small trade on the
VaR of a given, large portfolio.

The normal linear VaR model can be extended to the case where the portfolio’s returns, or
the risk factor returns, have leptokurtic and skewed distributions. We have derived formulae for
Student ¢ distributed VaR, for normal mixture VaR and for Student ¢+ mixture distributed VaR.
The mixture linear VaR models result in an implicit rather than an explicit formula for VaR.
They provide an ideal framework for scenario VaR in the presence of two or more possible
regimes, or states of the world. In Section 1V.7.2 we shall illustrate this by considering the
credit spread 1-year VaR of a BBB bond under three scenarios, i.e. that it is downgraded,
upgraded, and that its rating remains the same by the end of the year.

The expected tail loss is the expected loss, in present value terms, given that VaR is exceeded.
It is also called the conditional VaR. ETL is more informative than VaR because it provides
information of the average or expected loss when the VaR is exceeded. We have derived gen-
eral formulae for the ETL under the assumption that a portfolio’s returns have normal, Student
t and mixtures of these distributions. Empirical examples show that the normal mixture ETL
and the Student ¢ distributed ETL may be considerably greater than the normal ETL, when
returns have leptokurtic and skewed distributions.

The examples in this chapter have focused on portfolios represented by cash flows, inter-
national equity portfolios and commodity futures portfolios. In each case we assumed the
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portfolio has been mapped to a set of standard risk factors following the techniques described
in Chapter 111.5. We have used these portfolios to:

e show that adjusting VaR and ETL for a non-zero discounted expected return only has a
significant effect when the risk horizon is very long and the discounted expected return
is very large;

e llustrate how to adjust VaR and ETL for autocorrelation in portfolio returns;

e estimate the systematic VaR and specific VaR for an equity portfolio using (a) equally
and (b) exponentially weighted estimates for the portfolio volatility and its market beta;

e decompose total systematic VaR into different stand-alone and marginal VVaR compo-
nents, due to different classes of risk factors;

e aggregate stand-alone VaRs into the total risk factor VaR, in a sub-additive manner;

e measure the incremental VaR of adding a single swap to a large swaps portfolio;

e demonstrate how the different theoretical assumptions made by normal, Student ¢ and
mixture VaR models affect the VaR and ETL estimates; and

e explain how EWMA covariance matrices may be applied in the context of the parametric
linear VaR model.

Our first case study was on a UK bond portfolio where the risk factors are fixed maturities
along a zero coupon yield curve. We explained how to use principal component analysis to
reduce the dimensions of the risk factor space: instead of 60 risk factors (constant maturity
interest rates) we used only three risk factors (the first three principal components), and the
approximation error was very small indeed. That is, the VaR was almost exactly the same
whether we used 60 or three risk factors. It can also be argued that the VaR based on only
three risk factors is the more accurate of the two, because the dimension reduction allows us
to ignore extraneous ‘noise’ in the data that should not affect the VaR estimate.

The second case study examined the risks facing a commodity futures trading business with
desks trading silver and natural gas. The study highlighted the very different characteristics
of these two commaodities and disaggregated the total VaR of the trading activities into the
stand-alone and marginal VaRs due to trading in both natural gas and silver futures.

The last case study illustrated the application of different parametric linear models to esti-
mate both the VaR and the ETL for an exposure to the iTraxx Europe 5-year credit spread
index. The historical distribution of this risk factor is highly non-normal, with a large negative
skewness and an extremely high excess kurtosis, and its daily changes have a significant
positive autocorrelation. Hence, the normal i.i.d. model is totally inappropriate. The most rep-
resentative parametric linear VaR model is the normal mixture VaR model with autocorrelated
returns. This model provided 1% 10-day VaR and ETL estimates that are approximately 2.5
times the size of the normal i.i.d. VaR and ETL estimates! Clearly the use of a normal i.i.d.
model would seriously underestimate the risk of such an exposure.



V.3
Historical Simulation

IV.3.1 INTRODUCTION

Historical simulation as a method for estimating VaR was introduced in a series of papers by
Boudoukh et al. (1998) and Barone-Adesi et al. (1998, 1999). A recent survey suggests that
about three-quarters of banks prefer to use historical simulation rather the parametric linear
or Monte Carlo VaR methodologies.® Why should this be so — what are the advantages of
historical simulation over the other two approaches?

The main advantage is that historical VaR does not have to make an assumption about
the parametric form of the distribution of the risk factor returns. Although the other mod-
els can include skewed and heavy tailed risk factor returns, they must still fit a parametric
form for modelling the multivariate risk factor returns. And usually the dependencies between
risk factors in this multivariate distribution are assumed to be much simpler than they are in
reality.

For instance, the parametric linear model assumes that risk factor return dependencies are
linear and are fully captured by one or more correlation matrices. This is also commonly
assumed in Monte Carlo VaR, although here it is possible to assume more complex depen-
dency structures as explained in the next chapter. Also, the parametric linear VaR model is a
one-step model, based on the assumption that risk factor returns are i.i.d. There is no simple
way that path-dependent behaviour such as volatility clustering can be accounted for in this
framework. Monte Carlo VaR models can easily be adapted to include path dependency, as
we shall see in the next chapter. But still, they have to assume some idealized form for the risk
factor evolution. For instance, Monte Carlo VaR may assume that volatility and correlation
clustering are captured by a GARCH model.

Historical VaR does not need to make any such parametric assumption, and instead the
dynamic evolution and the dependencies of the risk factors are inferred directly from historical
observations. This allows the model to assess the risk of complex path-dependent products or
the risk of simple products, but still include the dynamic behaviour of risk factors in a natural
and realistic manner.

Historical VaR is also not limited to linear portfolios, as the parametric linear VaR model
is. So the advantages of historical simulation over the parametric linear model are very
clear. However, both historical and Monte Carlo VaR may be applied to any type of port-
folio. So, what are the advantages, if any, of the historical VAR model over Monte Carlo
VaR? In fact, let us rephrase this question: ‘Which model has the most substantial limita-
tions?” The Monte Carlo VaR model suffers from the drawback of being highly dependent on
finding a suitably realistic risk factor returns model. Likewise, in the course of this chapter

L In the research of Perignon and Smith (2006), of the 64.9% of firms that disclosed their methodology, 73% reported the use of
historical simulation.
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and Chapter IV.5 we shall show that if the historical VaR model is to be used then several
challenges must be addressed.?

Firstly, it is difficult to apply historical VaR to risk assessments with a horizon longer than
a few days. This is because data limitations are a major concern. To avoid unstable VaR esti-
mates when the model is re-estimated day after day, we require a considerable amount of
historical data. Even 4 years of daily historical data are insufficient for an acceptable degree
of accuracy unless we augment the historical model in some way.® Overlapping data on h-day
returns could be used, but we shall show in Section 1V.3.2.7 that this can seriously distort the
tail behaviour of the portfolio return distribution.

Hence, almost always, we base historical VaR estimation on the distribution of daily port-
folio returns (or P&L) and then scale the 1-day VaR estimate to an h-day horizon. But finding
an appropriate scaling rule for historical VaR is not easy, as we shall see in Section 1V.3.2.
Also, scaling up the VaR for option portfolios in this way assumes the portfolio is rebalanced
daily over the risk horizon to return risk factor sensitivities to their value at the time the VaR
is measured. That is, we can measure what | call the dynamic VaR of an option portfolio, but
we shall see in Section 1V.5.4 that the standard historical model is very difficult to apply to
static VaR estimation, i.e. the VaR estimate based on no trading over the risk horizon.

We should recall that a vital assumption in all VaR models is that the portfolio remains the
same over the risk horizon, in a sense that will be made more precise in Section IV.5.2.4. Since
the historical simulation model forecasts future returns using a large sample of historical data,
we have to recreate a historical ‘current’ returns series by holding the portfolio characteristics
constant. For instance, in cash equity portfolios the current portfolio weights on each stock
and the current stock betas are all held constant as we simulate “current” portfolio returns for
the entire historical data period. Hence, an implicit assumption of historical VaR is that the
current portfolio, which is optimal now, would also have been the portfolio of choice during
every day of the historical sample.* Thus a criticism of historical VaR that cannot always be
levelled at the other two approaches is that it is unrealistic to assume that we would have held
the current portfolio when market conditions were different from those prevalent today.

A difficulty that needs addressing when implementing the historical VaR model is that a
long data history will typically encompass several regimes in which the market risk factors
have different behaviour. For instance, during a market crash the equity risk factor volatili-
ties and correlations are usually much higher than they are during a stable market. If all the
historical data are treated equally, the VaR estimate will not reflect the market conditions that
are currently prevailing. In Section 1V.3.3 we shall recommend a parametric volatility adjust-
ment to the data, to account for volatility clustering regimes in the framework of historical
simulation.

Given the substantial limitations, it is difficult to understand why so many banks favour
historical VaR over Monte Carlo VaR models. Maybe market risk analysts rely very heavily
on historical data, because (usually) it is available, and they draw some confidence from a

2 See also Pritsker (2006) for a critical review of the historical simulation approach to VaR estimation.

3 Such as by fitting a Johnson distribution to the first four moments of the simulated portfolio returns, or using one of the other
techniques described in Section 1V.3.4.

4 Of course the parametric linear and Monte Carlo VaR models also assume that the portfolio (as represented by its asset weights or
risk factor sensitivities) is constant. But these models make no reference to a historical period. Both methods employ a covariance
matrix of asset weights or risk factor returns over the risk horizon, but how we forecast this matrix is a different problem. Yes, we may
use historical data to estimate the matrix, indeed this is the usual interpretation of the Basel Committee’s recommendations for data.
But we could base this matrix on just a year of daily data, or ‘make up’ a covariance matrix, i.e. use a subjective forecast for volatilities
and correlations of the risk factor returns. See Section IV.7.2 for further information on scenario VaR in the parametric linear model.
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belief that if a scenario has occurred in the past, it will reoccur within the risk horizon of the
model. But in my view their reliance on historical data is misplaced. Too often, when a crisis
occurs, it is a scenario that has not been experienced in the past.

In my view, the great advantage of Monte Carlo simulation is that is uses historical
data more intelligently than standard historical simulation does. After fitting a parametric
behavioural model (preferably with volatility clustering and non-normal conditional return
distributions) to historical data, the analyst can simulate many thousands of possible scenarios
that could occur with that model. They do not assume that the one, experienced scenario that
led to that model will also be the one, of all the consistent scenarios, that is actually real-
ized over the risk horizon. A distinct advantage of the filtered historical simulation approach
(which is described in Section 1V.3.3.4) over standard historical simulation is that it combines
Monte Carlo simulation based on volatility clustering with the empirical non-normal return
distributions that have occurred in the past.

The aim of the present chapter is to explain how to use historical VaR to obtain realistic VaR
estimates. We focus on linear portfolios here, leaving the more complex (and thorny) problem
of the application of historical VaR to option portfolios to Chapter 1V.5. We shall propose the
following, very general steps for the implementation of historical VaR for linear portfolios:

Obtain a sufficiently long period of historical data.

Adjust the simulated portfolio returns to reflect the current market conditions.
Fit the empirical distribution of adjusted returns.

Derive the VaR for the relevant significance level and risk horizon.

We now detail the structure of this chapter.

Section 1V.3.2 focuses on the properties of standard historical VaR, focusing on the prob-
lems we encounter when scaling VaR from a 1-day to an h-day horizon. We describe how
the stable distribution assumption provides a method for estimating a scale exponent and we
explain how risk factor scale exponents can relate to a power law scaling of VaR for linear
portfolios. Then we estimate this exponent for major equity, foreign exchange and interest
rate risk factors. The case for non-linear portfolios is more difficult, because portfolio returns
need not be stable even when the risk factor returns are stable; also, even if it was considered
appropriate to scale equity, commodity, interest rate, and exchange rate risk factors with the
square root of time, this is definitely not appropriate for scaling volatility.

Section 1V.3.3 concerns the preparation of the historical data set. It is motivated by a case
study which demonstrates that when VaR is estimated using equal weighing of historical
returns it is the choice of data, rather than the modelling approach, that really determines
the accuracy of a VaR estimate. We emphasize the need to adjust historical data so that they
more accurately reflect current market conditions, and for short-term VaR estimation we rec-
ommend a volatility adjustment of historical returns. The section ends with a description and
an illustration of filtered historical simulation, and a discussion of its advantages over standard
historical simulation.

Section 1V.3.4 provides advice on estimating historical VaR at extreme quantiles when only
a few years of daily data are available. Non-parametric smoothing and parametric fitting of
the empirical distribution of (adjusted) portfolio returns can improve the precision of his-
torical VaR at the 99% and higher confidence levels. Non-parametric methods include the
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Epanechnikov kernel and the Gaussian kernel, and we also discuss several parametric meth-
ods including the Johnson SU distribution, the Cornish-Fisher expansion, and the generalized
Pareto and other extreme value distributions.

Up to this point we will have considered the measurement of VaR at the portfolio level.
Now we consider the historical systematic VaR, which is based on the risk factor mapping
of different linear portfolios. Section 1V.3.5 describes the estimation of historical VaR when
portfolio returns are a linear function of either asset or risk factor returns. Several case studies
and examples of historical VVaR modelling for cash flow, equity and commodity portfolios are
presented, and we describe how systematic historical VaR may be disaggregated into stand-
alone VaR and marginal VaR components.

Section 1V.3.6 shows how to estimate the conditional VaR or expected tail loss in a historical
VaR model. We give analytic formulae for computing ETL when the historical returns are
fitted with a parametric form, and conclude with an example. The results confirm that fitting
a Johnson distribution to the moments of the empirical returns can be a useful technique
for estimating ETL (and VaR) at high levels of confidence. Section 1V.3.7 summarizes and
concludes.

IV.3.2 PROPERTIES OF HISTORICAL VALUE AT RISK

This section provides a formal definition of historical VaR and summarizes the approach for
different types of portfolios. We then consider the constraints that this framework places on
the historical data and justify our reasons for basing historical VaR estimation on daily returns.
This leads to a discussion on a simple scaling rule for extending a 1-day historical VaR to a
historical VaR at longer risk horizons.

1V.3.2.1 Definition of Historical VaR

The 1000% h-day historical VaR, in value terms, is the o quantile of an empirical h-day
discounted P&L distribution. Or, when VaR is expressed as a percentage of the portfolio’s
value, the 1000% h-day historical VaR is the o quantile of an empirical h-day discounted return
distribution. The percentage VaR can be converted to VaR in value terms: we just multiply it
by the current portfolio value.

Historical VaR may be applied to both linear and non-linear portfolios. When a long-only
(or short-only) linear portfolio is not mapped to risk factors, a historical series of returns on the
portfolio is constructed by holding the current portfolio weights constant and applying these
to the asset returns to reconstruct a constant weighted portfolio returns series. An example is
given in Section 1V.3.4.2.

But the concept of a ‘return’ does not apply to long-short portfolios, because they could
have a value of zero (see Section 1.1.4.4). So in this case we generate the portfolio’s P&L
distribution directly, by keeping the current portfolio holdings constant, and calculate the
VaR in nominal terms at the outset. This approach is put into practice in the case study of
Section 1V.3.5.6.

When a portfolio is mapped to risk factors, the risk factor sensitivities are assumed constant
at their current values and are applied to the historical risk factor returns to generate the portfo-
lio return distribution. Case studies to illustrate this approach are provided in Sections 1V.3.4.1
and IV.3.6.3.
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IV.3.2.2 Sample Size and Data Frequency

For assessing the regulatory market risk capital requirement, the Basel Committee recommends
that a period of between 3 and 5 years of daily data be used in the historical simulation model.
But the sample size and the data frequency are not prescribed by any VaR model: essentially
these are matters of subjective choice.

Sample Size

If VaR estimates are to reflect only the current market conditions rather than an average over
a very long historical period, it seems natural to use only the most recent data. For instance,
if markets have behaved unusually during the past year, we may consider using only data
from the last 12 months. A relatively short data period may indeed be suitable for the linear
and Monte Carlo VaR models. The covariance matrix will then represent only recent market
circumstances. But the historical simulation VaR model requires much more than just esti-
mating the parameters of a parametric return distribution. It requires one to actually build the
distribution from historical data, and then to focus on the tail of this distribution. So, with
historical simulation, the sample size has a considerable influence on the precision of the
estimate.

Since VaR estimates at the 99% and higher confidence levels are the norm, it is important
to use a large number of historical returns.> For a 1% VaR estimation, at least 2000 daily
observations on all the assets or risk factors in the portfolio should be used, corresponding
to at least 20 data points in the 1% tail. But even 2000 observations would not allow the
0.1% VaR to be estimated with acceptable accuracy. See Section 1V.3.4 for a discussion on
improving the precision of historical VaR at very high confidence levels.

However, there are several practical problems with using a very large sample. First, collec-
tion of a data on all the instruments in the portfolio can be a formidable challenge. Suppose the
portfolio contains an asset that has only existed for one year: how does one obtain more than
one year of historical prices? Second, in the historical model the portfolio weights, or the risk
factor sensitivities if the model has a risk factor mapping, are assumed constant over the entire
historical data period. The longer the sample period the more questionable this assumption
becomes, because a long historical period is likely to cover several different market regimes
in which the market behaviour would be very different from today.

Data Frequency

The choice of sample size is linked to the choice of data frequency. It is easier to obtain
a large sample of high frequency data than of low frequency data. For instance, to obtain
500 observations on the empirical distribution we would require a 20-year sample if we used
10-day returns, a 10-year sample if we used weekly returns, a 2-year sample if we used daily
returns, and a sample covering only the last month or so if we used hourly returns.

For computing VaR-based trading limits it would be ideal if the data warehouse captured
intra-day prices on all the risk factors for all portfolios, but in most financial institutions today
this is computationally impractical. Since it is not appropriate to hold the current portfolio

5 For instance, if we were to base a 1% VaR on a sample size of 100, this is just the maximum loss over the sample. So it will remain
constant day after day and then, when the date corresponding to the current maximum loss falls out of the sample, the VaR estimate
will jump to another value.
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weights and sensitivities constant over the past 10 years or more, and since also the use of such
a long historical period is hardly likely to reflect the current circumstances, it is not appropriate
to base historical VaR models on weekly or monthly data. There are also insufficient data to
measure historical VaR at extreme quantiles using an empirical distribution based on weekly
or monthly returns.

Hence, the historical h-day VaR is either scaled up from a 1-day VaR estimate based
on historical data on the portfolio’s daily returns or P&L, or we might consider using
multi-step simulation. In the next subsection we consider the first of these solutions, leaving
our discussion of multi-step simulation to Sections 1V.3.2.7 and 1V.3.3.4.

1V.3.2.3 Power Law Scale Exponents

In this subsection we discuss how to estimate the 100a% h-day historical VaR as some power
of h times the 100a% 1-day historical VaR, assuming the 100a% 1-day historical VaR has
been computed (as the o quantile of the daily returns or P&L distribution).

In Section 1V.1.5.4 we showed that the assumption that returns are normal and i.i.d. led to
a square-root-of-time rule for linear VaR estimates. For instance, to estimate the 10-day VaR
we take the square root of 10 times the 1-day VaR. The square-root-of-time rule applies to
linear VaR because it obeys the same rules as standard deviation, either approximately over
short risk horizons or over all horizons when the expected return is equal to the discount rate.
But in the historical model the VaR corresponds to a quantile of some unspecified empirical
distribution and quantiles do not obey a square-root-of-time rule, except when the returns are
i.i.d. and normally distributed.

Scaling rules for quantiles can only be derived by making certain assumptions about the
distribution. Suppose we have an i.i.d. process for a random variable X, but that X is not
necessarily normally distributed. Instead we just assume that X has a stable distribution.®
When a distribution is £-stable then the whole distribution, including the quantiles, scales as
h'/%. For instance, in a normal distribution & = 2 and we say that its scale exponent is 3. More
generally, the scale exponent of a stable distribution is £~*. This exponent is used to scale the
whole distribution of returns, not just its standard deviation, and in VaR applications we use it
to scale the quantiles of the distribution.

Let x; , denote the a quantile of the h-day discounted log returns. We seek & such that

Xha = hl/gxl,a. (IV31)
In other words, taking logs of the above,

In(h)

= IV.3.2
In(xh,ot) - In(xlﬂ) ( )

Hence & can be estimated as the slope of graph with In(x,,) — In(x,,) on the horizontal axis
and In(h) on the vertical axis. If the distribution is stable the graph will be a straight line and
& will not depend on the choice of a. Nor should it vary much when different samples are
used, provided the sample contains sufficient data to estimate the quantiles accurately. When

6 The concept of a stable distribution was introduced in Section 1.3.3.11.
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a constant scale exponent corresponding to (I1V.3.1) exists, we say that the log return obeys a
power law scaling rule with exponent .

IV.3.2.4 Case Study: Scale Exponents for Major Risk Factors

In this section we illustrate the estimation of (IV.3.2) for some major risk factors, and use the
estimates for different values of « to investigate whether their log returns are stable. First we
estimate the scale exponent using (1V.3.2), as a function of «, for the S&P 500 index. We base
our results on daily data over a very long period from 3 January 1950 until 10 March 2007
and then ask how sensitive the estimated scale exponent is to (a) the choice of quantile «, and
(b) the sample data.

The spreadsheet for Figure 1V.3.1 aggregates daily log returns into h-day log returns for
values of h from 2 to 20, and for a fixed o computes the quantile of the h-day log returns, x;, ,.
First £ is estimated as the slope of the log-log plot of the holding period versus the quantile
ratio, as explained above. Figure 1V.3.1 illustrates the graph for a = 5% where the quantiles
are based on the entire sample period. The scale exponent £~! is the reciprocal of the slope of
the best fit line, which in Figure 1V.3.1 is 0.50011. This indicates that a square-root scaling
rule for 5% quantiles of the S&P 500 index is indeed appropriate.
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Figure 1V.3.1 Log-log plot of holding period versus 5% quantile ratio: S&P 500 index

Table 1V.3.1 Estimated values of scale exponent for S&P 500 index

a 0.1% 1% 5% 10%

1950-2007 0.4662 0.5186 0.5001 0.4853
1970-2007 0.5134 0.5074 0.4937 0.4639
1990-2007 0.4015 0.4596 0.4522 0.4268

However, there is some variation when different quantiles and different sample periods are
chosen. Table 1V.3.1 records the reciprocal of the slope of the log-log plot for different values



148 Value-at-Risk Models

of a and when the quantiles are based on three different sample periods: from the beginning
of January 1950, 1970 and 1990 onward. Using data from 1990 onward the scale exponent for
the 10% and 0.1% quantiles is less than 0.5, although it should be noted that with little more
than 4000 data points, the 0.1% quantile may be measured imprecisely. Still, based on data
since 1990 only, it appears that the scale exponent for the 1% quantile of the S&P 500 index
is closer to 0.45 than to 0.5.

We also estimate the scale exponent for three other important risk factors, the $/£ exchange
rate and two US Treasury interest rates at 3 months and 10 years, using daily data since
January 1971. The relevant log-log plots are shown in Figures 1V.3.2-1V.3.4, each time based
on a = 5% and the results for other quantiles are shown in Table 1V.3.2.” The $/£ exchange
rate has a lower estimated scale exponent than the interest rates and, again except for the 0.1%
and 10% quantiles, appears to be close to 0.5. So, like the S&P 500 index, the $/£ exchange
rate quantiles could be assumed to scale with the square root of time.
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Figure 1V.3.2 Log-log plot of holding period versus quantile ratio: $/£ forex rate

Table 1V.3.2 Estimated scale exponents for $/£ forex rate and US interest rates

o 0.10% 1% 5% 10%

$/E£ 0.4543 0.4983 0.5298 0.5590
US 3m 0.5575 0.6065 0.5709 0.5795
UsS 10yr 0.5363 0.5651 0.5223 0.5591

The US interest rates show evidence of trending, since the estimated scale exponent is
greater than 0.5. Thus if mean reversion occurs, it does so over long periods and with a scale
exponent of 0.6, scaling the 1% 1-day VaR on the US 3-month Treasury bill rate over a 10-day
period implies an increase over the 1-day VaR of 10%¢ rather than 10°3. In other words, the
1-day VaR of $1 million becomes $3.98 million over 10 days, rather than $3.16 million under
square-root scaling.

7 For the interest rates we use daily changes, because these are the risk factors in the PV01 mapping, and for the exchange rate we use
log returns.
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Figure 1V.3.3 Log-log plot of holding period versus quantile ratio: US 3-month Treasury bills
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Figure 1V.3.4 Log-log plot of holding period versus quantile ratio: US 10-year bond
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In Tables IV.3.1 and 1V.3.2 the estimated scale exponents were not identical when estimated
at different quantiles. Either the variation is due to sampling error, or the distributions are not
stable. In the next section we shall assume the variation is due to sampling error and use a
scale exponent of 0.5 for the S&P 500 and the $/£ exchange rate,® 0.55 for the US 10-year

bond and 0.575 for the US 3-month Treasury bill.

It is commonly assumed that volatility scales with the square root of time, but we now
show that this assumption may not be appropriate. Indeed, due to the rapid mean reversion
of volatility, we should apply a scale exponent that is significantly less than 0.5. Table 1V.3.3
summarizes the scale exponent on the S&P 500 volatility index (Vix), the FTSE 100 volatility

8 Note that the same scale exponent would apply to the £/$ exchange rate, since the log returns on one rate are minus the log returns

on the other.



150 Value-at-Risk Models

index (Vftse) and the DAX 30 volatility index (\Vdax) estimated using data since 1992.° Scale
exponent values estimated at an extreme quantile are very imprecise, but near-linear log-log
plots are produced at the 5% quantile, and the spreadsheets accompanying this section imply
that at this quantile the appropriate scale exponents are estimated at the values displayed in
Table 1V.3.3.

Table 1V.3.3 Recommended scale exponents
for volatility indices

Index Scale exponent
Vix 0.355
Vitse 0.435
Vdax 0.425

IV.3.2.5 Scaling Historical VaR for Linear Portfolios

The returns on a linear portfolio are a weighted sum of returns on its assets or risk factors. If
the returns on the assets or risk factors are stable, the portfolio returns will only be stable if
all the assets or risk factors have the same scale exponents. In that case it makes no difference
whether we scale the asset or risk factor returns before applying the portfolio mapping, or
whether we apply the scaling to the portfolio returns directly. However, if the assets or risk
factors have different scale exponents, which would normally be the case then the portfolio
returns will not be stable.

To see this, consider the case of a portfolio, with weights w = (w, ..., w,)" applied to n
assets, and with daily log returns at time ¢ denoted by X, = (xy,, ..., x,,)". The daily log return
on the portfolio at time ¢ is then Yy, =w'x,. Now suppose the ith asset return is stable and has
scale exponent », =&*. Then, the h-day log return on the portfolio is

Y =WX =W (R 2xy,, ... b2, ) £R2Y,

unless h=r;=...=\,.

For instance, consider a portfolio for a UK investor with 50% invested in the S&P 500
index and 50% invested in the notional US 10-year bond. The S&P 500 and £/$ exchange rate
returns may scale with the square root of the holding period, but the scale exponent for the
US 10-year bond is approximately 0.55. Hence, the portfolio returns will not scale with the
square root of the holding period.

We could therefore consider using one of the following approximations for scaling
historical VaR, for a linear portfolio:

e Assume the assets or risk factor daily returns are stable, estimate their scale exponents,
take an average and use this to scale them to h-day returns. Then apply the portfolio
mapping to obtain the h-day portfolio returns.

e Alternatively, compute the portfolio daily returns, assume these are stable and estimate
the scale exponent, then scale the portfolio’s daily returns to h-day returns.

9 Unfortunately only a little volatility index data are currently available, the longest series being the Vix which starts in 1990.
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The first approach is the more approximate of the two, but it has distinct practical
advantages over the second approach. First, the analyst may store a set of estimated scale
exponents for the major risk factors, in which case there is no need to re-estimate a scale expo-
nent for each and every portfolio. Secondly, returns on major risk factors may be more likely
to have stable distributions than arbitrary portfolios. The advantage of the second approach is
that it should produce more accurate scaling rules, possibly with scale exponents depending
on the significance levels for VaR, but its disadvantage is that a very large historical sample of
portfolio returns is required if the scale exponents are to be measured accurately, particularly
for extreme quantiles.

IV.3.2.6 Errors from Square-Root Scaling of Historical VaR

Any deviation from square-root scaling is of particular interest for economic capital allocation,
where extreme quantiles such as 0.1% may be scaled over long horizons. Table 1V.3.4 displays
the h-day VaR that is scaled up from the 1-day VaR of $1 million, for different risk horizons
h and for different values of the scale exponent. The square-root scaling rule gives the VaR
estimates in the centre column (shown in bold). For instance, with square-root scaling a 1-day
VaR of $1 million would scale to $10°° million, i.e. $3.16 million over 10 days. The other
columns report the VaR based on other scale exponents, expressed as a percentage of this
figure. For instance, if the scale exponent were 0.6 instead of 0.5, the 1-day VaR would scale
to 1.259 x $3.16 million, i.e. $3.978 million over 10 days.

Table 1V.3.4 Scaling 1-day VaR for different risk horizons and scale exponents

Scale exponent 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
Horizon (days)

2 87.1% 90.1% 933% 96.6% 141 103.5% 107.2% 111.0% 114.9%

5 72.5% 78.6% 851% 92.3% 224 108.4% 117.5% 127.3% 138.0%
10 63.1% 70.8% 79.4% 89.1% 3.16 112.2% 1259% 141.3% 158.5%
30 50.6% 60.0% 71.2% 844% 548 1185% 140.5% 166.6% 197.4%
100 39.8% 50.1% 63.1% 79.4% 10.00 125.9% 158.5% 199.5% 251.2%
250 33.1% 43.7% 57.6% 75.9% 15.81 131.8% 173.7% 228.9% 301.7%

If we applied a square-root scaling rule, when a power law scaling with a different exponent
is in fact appropriate, the errors could be very large indeed. When the scale exponent is greater
than 0.5 the square-root scaling law may substantially underestimate VaR and when it is
greater than 0.5 the square-root scaling law may substantially overestimate VaR, especially for
long term risk horizons. Given the scale exponents for major risk factors that were estimated in
Section 1V.3.2.4, using a square-root scaling rule is about right for the VaR on US equities and
the £/$ exchange rate, but it would substantially underestimate the VaR on US interest rates.
And when volatility is a risk factor, square-root scaling of a positive vega exposure would lead
to a very considerable overestimation of VaR, because volatility mean-reverts rapidly.

IV.3.2.7 Overlapping Data and Multi-Step Historical Simulation

Historical scenarios capture the empirical dependencies between risk factors in a natural way,
just by sampling contemporaneous historical returns on each risk factor. Multi-step historical
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scenarios can also capture the dynamic behaviour in each risk factor, such as volatility cluster-
ing, just by simulating consecutive returns in the order they occurred historically. For a linear
portfolio, multi-step simulation consists of simulating an h-day log return by summing h con-
secutive daily log returns, and only then revaluing the portfolio. By contrast, for a portfolio of
path-dependent products, we would need to evaluate the portfolio on every consecutive day
over the risk horizon, which can be very time-consuming.

Unless we also apply a parametric model, as in the filtered historical simulation model
described in Section 1V.3.3.4, multi-step historical simulation presents a problem if we use
overlapping samples, because this can distort the tail of the return distribution. To see why,
suppose we observe 1000 daily P&Ls that are normal and i.i.d. with zero mean. Suppose that,
by chance, these are all relatively small, i.e. of the order of a few thousand US dollars, except
for one day when there was a very large negative P&L of $1 million. Then $1 million is the
0.1% daily VaR. However, the 1% daily VaR is much smaller. Let us assume it is $10,000, so
that VaR 014 is 100 times larger than VaR; ;4. What can we say about the 10-day VaR at these
significance levels?

Since the daily returns are normal and i.i.d. we may scale VaR using the square-root-of-
time rule. Thus, VaRyg 015 will be 100 times larger than VaRy, 10. In other words, using the
square-root-of-time rule, the loss that is experienced once every 40 years is 100 times the loss
that is experienced once every 4 years.

Now consider the 10-day P&L on the same variable. When based on non-overlapping data
there are 100 observations, only one of which will be about $1 million. So the 1% 10-day VaR
is about $1 million, which is much larger than it would be using the square-root scaling rule.
And the 0.1% 10-day VaR cannot be measured because there are not enough data. However,
we might consider using overlapping 10-day P&Ls, so that we now have 1000 observations
and 10 of these will be approximately $1 million. Then the 1% 10-day VaR is again about $1
million, and now we can measure the 0.1% 10-day VaR — and it will also be about $1 million!
So, using overlapping data, the loss that is experienced once every 40 years is about the same
as the loss that is experienced once every 4 years. That is, the 0.1% 10-day VaR is about the
same as the 1% 10-day VaR. In short, using overlapping data in this way will distort the lower
tail of the P&L distribution, creating a tail that is too ‘blunt’ below a certain quantile, i.e. the
1% quantile in this exercise.

Thus, to apply multi-step historical simulation for estimating h-day VaR without distorting
the tails, one has to apply some type of filtering, such as method described in Section 1V.3.3.4.
However, we do not necessarily need to apply multi-step simulation. Under certain assump-
tions about risk factor returns and the portfolio’s characteristics, we can scale up the daily VaR
to obtain an h-day VaR estimate, as described in the previous subsections.

IV.3.3 IMPROVING THE ACCURACY OF HISTORICAL
VALUE AT RISK

This section begins with a case study which demonstrates that the historical VVaR based on an
equally weighted return distribution depends critically on the choice of sample size. In fact,
when data are equally weighted it is our choice of sample size, more than anything else, that
influences the VaR estimate. By showing how close the normal linear VaR and historical VaR
estimates are to each other, we show that the sample size is the most important determinant
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of the VaR estimate. The main learning point of this case study is that equal weighting of risk
factor returns is not advisable for any VaR model.

In the linear and Monte Carlo VaR models the risk factor returns data are summarized
in a covariance matrix, and instead of equally weighted returns this matrix can be con-
structed using an exponentially weighted moving average model. But, if not equal, what sort
of weighting of the data should we use in historical VaR? After the case study we describe
two different ways of weighting the risk factor returns data before the distribution of the port-
folio returns is constructed: exponential weighting of probabilities and volatility adjustment of

returns. Volatility adjustment motivates the use of filtered historical simulation, described in
Section 1V.3.3.4.

IV.3.3.1 Case Study: Equally Weighted Historical and Linear VaR

For a given portfolio the historical and normal linear VaR estimates based on the same sample
are often much closer than two historical VaR estimates based on very different samples. We
demonstrate this with a case study of VaR estimation for a simple position on the S&P 500
index. Figure 1V.3.5 shows the daily historical prices of the S&P 500 index (in black) and
its daily returns (in grey) between 31 December 1986 and 31 March 2008. The effects of the
Black Monday stock market crash in October 1987, the Russian crisis in August 1998, the

technology boom in the late 1990s and subsequent bubble burst in 2001 and 2002, and the US
sub-prime mortgage crisis are all evident.
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Figure 1V.3.5 S&P 500 index and daily returns
In the case study we:

e apply both the normal linear and the historical VaR models to estimate VaR for a sin-
gle position on the S&P 500 index, using an equally weighted standard deviation in

the normal linear model and an equally weighted return distribution in the historical
simulation model;
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e compare time series of the two VaR estimates over a 1-day horizon at the 99% confidence
level;°

e compare time series of VaR estimates over a rolling data window based on a sample of
size T =500 and of T = 2000 data points.

Hence, two time series of VaR estimates are computed, for each choice of T, using a quan-
tile estimated from the histogram of returns for the historical simulation model and an

equally weighted standard deviation for the normal linear VaR. All figures are expressed as a
percentage of the portfolio value.
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Figure IV.3.6  Time series of 1% historical VaR estimates, S&P 500
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Figure 1V.3.7 Time series of 1% normal linear VaR estimates, S&P 500

10 The relevant graphs for other significance levels may be generated in the spreadsheet for this case study.
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Figures 1V.3.6 and 1V.3.7 display the time series of 1-day 1% VaR estimates obtained
from each model, starting in December 1981 for T=500 and starting in December 1987
for T=2000. For each estimate we use the T most recent daily returns. The VaR based on
500 observations is, of course, more variable over time than the VaR based on 2000 obser-
vations, since we are weighting all the data equally. The ‘ghost effect’ of the 1987 global
crash is evident in both graphs, particularly so in the VaR based on 500 observations. Then,
exactly 500 days after the crash — and even though nothing particular happened on that day —
the VaR returned to more normal levels. Most of the time the historical VaR is dominated
by a few extreme returns, even when the sample contains 2000 observations, and when
one of these enters or leaves the data set the VaR can exhibit a discrete jump upward or
downward.*

Notice that the two different historical VaR estimates based on N =500 and N = 2000 differ
by 1%-2% on average. The two normal linear VaR estimates have differences of a similar
magnitude, though slightly smaller in general. In fact, there is more similarity between the
normal and historical VaR estimates for a fixed sample size than there is between the historical
VaR estimates for different sample sizes! Figure 1V.3.8 shows that the historical VaR tends to
be slightly greater than the normal linear VaR, and this is expected due to the excess kurtosis
in the S&P 500 daily return distribution.*? This figure shows that, on average, the historical
VaR is about 0.2% (of the portfolio value) greater than the normal linear VaR.*
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Figure 1V.3.8 Time series of difference between historical VaR and normal linear VaR, S&P 500

1 This is particularly evident for the 0.1% VaR, as the reader can verify by changing the significance level in the historical VaR
spreadsheet of this case study workbook.

12 The opposite is the case at the 10% significance level, as you can see in the spreadsheet. As we have seen in the previous chapter
this is a feature of the leptokurtic nature of the returns.

13 By contrast, and to back up our observation that the historical and linear VaR estimates based on the same sample size are much
closer than two historical (or two linear) VaR estimates based on very different sample sizes, the average absolute difference between

the two historical VaR estimates shown in Figure 1V.3.6 is 0.74%, and the average absolute difference between the two normal linear
VaR estimates shown in Figure 1V.3.7 is 0.78%.
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The global equity crash of 1987 is a major stress event in the sample: the S&P 500 fell by 23%
in one day between 18 and 19 October 1987. This single return had a very significant impact
on the normal linear VaR estimate because the equally weighted volatility estimate (based on
the last 500 days) jumped up almost 7 percentage points, from 15.6% on 18 October to 22.5%
on 19 October. However, this single initial return of the global equity crash had much less
effect on the historical VaR: it was just another return in the lower tail and its huge magnitude
was not taken into account. So on 19 October 1987, the normal linear VaR rose more than
1% overnight, whilst the historical VaR rose by only 0.03% of the portfolio value. It was not
until we had experienced several days of large negative returns that the historical VaR “caught
up’ with the normal linear VaR. Hence in Figure 1V.3.8 we see a short period in October 1987
when the normal linear VaR was about 0.6% (of the portfolio value) above the historical VaR
estimate. Then, exactly 500 days later, when the global crash data falls out of the sample, the
normal linear VaR jumps down as abruptly as it jumped up, whilst the historical VaR takes
a few days to decrease to normal levels. So in Figure 1V.3.8, during October 1989, we see a
short period where the historical VaR is much greater than the normal linear VaR.

We conclude that when returns data are equally weighted it is the sample size, rather than
the VaR methodology, that has the most significant effect on the error in the VaR estimates.
Clearly, equal weighting of returns data causes problems in all VaR models. Any extreme
market movement will have the same effect on the VaR estimate, whether it happened years
ago or yesterday, provided that it still occurs during the sample period. Consequently the
VaR estimate will suffer from “‘ghost features’ in exactly the same way as equally weighted
volatility or correlation estimates. Most importantly, when data are equally weighted, the VaR
estimate will not be sufficiently risk sensitive, i.e it will not properly reflect the current market
conditions. For this reason both the parametric linear and historical VaR models should apply
some type of weighting to the returns data, after which ghost features are no longer so apparent
in the VaR estimates.

IV.3.3.2 Exponential Weighting of Return Distributions

A major problem with all equally weighted VaR estimates is that extreme market events can
influence the VaR estimate for a considerable period of time. In historical simulation, this
happens even if the events occurred long ago. With equal weighting, the ordering of obser-
vations is irrelevant. In Chapter I11.3 we showed how this feature also presents a substantial
problem when equally weighted volatilities and correlations are used in short-term forecasts
of portfolio risk, and that this problem can be mediated by weighting the returns so that their
influence diminishes over time.

To this end, Section 11.3.8 introduced the exponentially weighted moving average method-
ology. We applied EWMA covariance matrices in the normal linear VaR model in
Section 1V.2.10. In Section 1V.2.10.1 we showed that a EWMA covariance matrix may be
thought of as an equally weighted covariance matrix on exponentially weighted returns,
where each return is multiplied by the square root of the smoothing constant A raised to
some power n, where n is the number of days since the observed return occurred. After
weighting the returns in this way, we apply equal weighting to estimate the variances and
covariances.

The historical VaR model can also be adapted so that it no longer weights data equally.
But instead of multiplying the portfolio returns by the square root of the smoothing constant
raised to some power, we assign an exponential weight to the probability of each return in its
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distribution.* Fix a smoothing constant, denoted X as usual, between 0 and 1. Then assign
the probability weight 1 — ) to the most recent observation on the return, the weight A(1 — )
to the return preceding that, and then weights of 22(1 — %), 23(1 — 1), AM*(1—2N),... as the
observations move progressively further into the past. When the weights are assigned in this
way, the sum of the weights is 1, i.e. they are probability weights.

Figure 1V.3.9 shows the weights that would be assigned to the return on each day leading
up to the time that the VaR is measured, for three different values of X, i.e. 0.999, 0.99 and
0.9. The horizontal axis represents the number of days before the VaR is measured. The larger
the value of %, the lower the weight on recent returns and the higher the weight assigned to
returns far in the past.
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Figure 1V.3.9 Exponential probability weights on returns

Then we use these probability weights to find the cumulative probability associated with the
returns when they are put in increasing order of magnitude. That is, we order the returns, start-
ing at the smallest (probably large and negative) return, and record its associated probability
weight. To this we add the weight associated with the next smallest return, and so on until we
reach a cumulative probability of 100a%, the significance level for the VaR calculation. The
100a% historical VaR, as a percentage of the portfolio’s value, is then equal to minus the last
return that was taken into the sum. The risk horizon for the VaR (before scaling) is the holding
period of the returns, i.e. usually 1 day.

Figure 1V.3.10 shows the cumulative probability assigned to the S&P 500 empirical return
distribution, based on the 1000 daily returns prior to 31 March 2008, the time when the VaR
is measured. We use the same data as for the case study in the previous section, starting on
6 April 2004. For a given \, start reading upward from the lowest daily return of —3.53%
(which occurred on 27 February 2007) adding the exponentially weighted probability associ-
ated with each return as it is included. The a quantile return is the one that has a cumulative
probability of o associated with it.

14 The assigned weight is not the square root of the smoothing constant raised to some power. But we still call this approach
‘exponential weighting” because the weights still decrease exponentially as the time since the return occurred increases.
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Figure 1V.3.10 Exponentially weighted distribution functions, S&P 500 daily returns

The quantiles depend on the value chosen for the weighting constant \. The 10% quantiles
are indicated on Figure 1V.3.10 for » =0.99 and 0.995." From these we see immediately
that the 10% VaR, which is minus the 10% quantile, is approximately 1.7% when x\ = 0.99
and approximately 1.45% when \ =0.995. But when » =0.999 the 10% VaR, not shown in
Figure 1V.3.10, is approximately 3%. Hence, the VaR does not necessarily increase or decrease
with A. It depends on when the largest returns occurred. If all the largest returns occurred a
long time before the VaR is estimated, then higher values of lambda would give a larger VaR
estimate. Otherwise, it is difficult to predict how the VaR at different quantiles will behave
as \ varies. The problem with this methodology is that the choice of \ (which has a very
significant effect on the VaR estimate) is entirely ad hoc.

1V.3.3.3 Volatility Adjustment

One problem with using data that span a very long historical period is that market
circumstances change over time. Equity markets go through periods of relatively stable,
upward-trending prices, periods of range bounded price behaviour, and periods where prices
fall rapidly and (often) rebound. Commodity futures markets may be exposed to bubbles,
seasonal price fluctuations and switching between backwardation and contango.'® Currency
market volatility comes in clusters and is influenced by government policy on intervention.
Fiscal policy also varies over the business cycle, so the term structures of interest rates and
the prices of interest rate sensitive instruments shift between different behavioural regimes. In
short, regime specific economic and behavioural mechanisms are a general feature of financial
markets.

Since historical simulation requires a very large sample, this section addresses the question
of how best to employ data, possibility from a long time ago when the market was in a different

15 Since the cumulative probability of 0.01 will almost certainly lie in between two observed returns, we can use linear interpolation
to estimate the 1% quantile return, as explained in Section 1.5.3.1.

16 Backwardation is the term given to a downward sloping term structure of futures prices, and contango refers to an upward sloping
term structure.
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regime. As a simple example, consider an equity market that has been stable and trending for
one or two years, but previously experienced a long period of high volatility. We have little
option but to use a long historical sample period for the historical VaR estimate, but we would
like to adjust the returns from the volatile regime so that their volatility is lower. Otherwise
the current historical VaR estimate will be too high. Conversely, if markets are particularly
volatile at the moment but were previously stable for many years, an unweighted historical
estimate will tend to underestimate the current VaR, unless we scale up the volatility of the
returns from the previous, tranquil period.

We now consider a volatility weighting method for historical VaR that was suggested by
Duffie and Pan (1997) and Hull and White (1998). The methodology is designed to weight
returns in such a way that we adjust their volatility to the current volatility. To do this
we must obtain a time series of volatility estimates for the historical sample of portfolio
returns. The best way to generate these would be to use an appropriate asymmetric GARCH
model, as described in Section 11.4.3, although a simple EWMA model may also be quite
effective.”

Denote the time series of unadjusted historical portfolio returns by {r,}”, and denote the

time series of the statistical (e.g. GARCH or EWMA) volatility of the returns by {&}til,
where T is the time at the end of the sample, when the VaR is estimated. Then the return at
every time t < T is multiplied by the volatility estimated at time T and divided by the volatility

estimated at time ¢. That is, the volatility adjusted returns series is

For= <G—T> o (IV.3.3)

5,

where T is fixed but ¢ varies over the sample, i.e. {t=1,..., T}. A time-varying estimate
of the volatility of the series (IV.3.3), based on the same model that was used to obtain
6., should be constant and equal to 6, i.e. the conditional volatility at the time the VaR is
estimated.®

EXAMPLE IV.3.1: VOLATILITY ADJUSTED VAR FOR THE S&P 500 INDEX

Use daily log returns on the S&P 500 index from 2 January 1995 to 31 March 2008 to estimate
symmetric and asymmetric GARCH volatilities. For each time series of volatility estimates,
plot the volatility adjusted returns that are obtained using (1V.3.3), where the fixed time T
is 31 March 2008, i.e. the date that the VaR is estimated. Then find the 1000% 1-day his-
torical VaR estimate, as a percentage of the portfolio value, based on both of the volatility
adjusted series. For a = 0.001, 0.01, 0.05 and 0.1 compare the results with the unadjusted
historical VaR.

17 Many of our illustrative examples will keep the volatility model as simple as possible, and focus instead on the general features
of historical VaR with and without any volatility adjustment. So we shall often use a simple EWMA volatility. However, EWMA
introduces yet another subjective choice to the VaR model, i.e. the smoothing constant. See Section 11.3.8 for further details. In
practice readers should use GARCH volatility to adjust historical data because GARCH model parameters are estimated optimally
from the sample (as explained in Section 11.4.2.2).

18 1n the text we have called &, the “volatility” at time ¢, but really it is the standard deviation. However, we divide one volatility by
another in (1V.3.3). So the result is the same, whether or not we annualize the standard deviations to become volatilities. We do not
have to use 7 for the volatility that we are imposing on the transformed returns. For example, we could adjust the returns to have a
long term average volatility or — in scenario analysis — a hypothetical value for volatility.
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SOLUTION The GARCH estimates are obtained using the Excel spreadsheet.”® Table IV.3.5
displays the estimated parameters of the two GARCH models.?

Table 1V.3.5 GARCH parameters for S&P 500 index

Parameter GARCH A-GARCH
® 1.085473E-06 3.609464E-07
o 0.0791 0.0979

8 0.9143 0.8988

PN - 0.0038

a+f 0.9934 0.9967

Long term volatility 20.27% 36.47%

Log likelihood 13848.27 13887.96

There is a leverage effect in the A-GARCH model, which captures the asymmetric response
of volatility to rises and falls in the index. The index has many significant falls during the sam-
ple period, each one precipitating a higher volatility than a rise in the index of the same
magnitude. The symmetric GARCH volatility ignores this effect, and hence underestimates
the long term average index volatility over the sample. This is about 20% according to the
GARCH model, but over 36% according to the A-GARCH model.

Also, compared with the A-GARCH volatility the symmetric GARCH volatility shows less
reaction to market events (because « is smaller) but greater persistence following a market
shock (because (3 is greater). The log likelihood will always be higher in the asymmetric
GARCH model, since it has one extra parameter. Nevertheless it is still clear that capturing an
asymmetric volatility response greatly improves the fit to the sample data in this case.

The resulting GARCH volatility estimates are compared in Figure 1V.3.11. This shows that
the index volatility varied considerably over the sample period, reaching highs of over 45%
during the Asian crisis in 1997, the Russian crisis in 1998 and after the burst of the technology
bubble. The years 2003—2006 were very stable, with index volatility often as low as 10% and
only occasionally exceeding 15%, but another period of market turbulence began in 2007,
precipitated by the credit crisis.

We now calculate the volatility adjusted returns that form the basis of the empirical dis-
tribution from which the historical VaR is computed as a quantile. Figure 1V.3.12 illustrates
the A-GARCH volatility adjusted returns, and compares them with the unadjusted returns.
Before adjustment, volatility clustering in returns is evident from the change in magnitude of
the returns over the historical period. For instance, the returns during the years 2003-2006
were considerably smaller, on the whole, than the returns during 2002. But after adjustment
the returns have a constant volatility equal to the estimated A-GARCH volatility at the end of
the sample.

Now we estimate the 1% 1-day historical VaR for a position on the S&P 500 index
on 31 March 2008, based on the unadjusted returns and based on the volatility adjusted

19 See Examples 11.4.1 and 11.4.3 for further details. We emphasize again that the use of Excel to estimate GARCH parameters is not
recommended and we only use it here for methodological transparency.

20| hope readers will not be confused by the use of o to denote both the significance level of the VaR estimate and the GARCH reaction
parameter in this example. Unfortunately both notations are absolutely standard, and it should be clear from the context which o we
are referring to. Note that the A-GARCH parameter A is the leverage coefficient, and this is not the same as the EWMA parameter X,
which denotes the smoothing constant. We continue to use these notations since both are standard.
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Figure IV.3.11 GARCH volatility estimates for the S&P 500 index

8%

6% -
4% -
2%
0%
—2%

[ F\, il 10 g

el A Ll L
Al

| 1A VTR A AR ORI A R
I(L |\.H“lll\llll||.. ikt l\

4%+ ---H4H+---HRAH--- - - - AR A e e -
-6%+----1-t-----4---4------pt--- - b+~
8% 4 —— AGARCH volatility adjusted return |
0% — Return
_12% T T T T T T T T T T T T T
Lo © r~ [eo) (23 o — N [a2] < Lo © M~ [ee]
22 2 2 2 2 2 2 2 2 < < 2 <
o o je e < o jo o o= e = o < o
(3] © o o (3] © o o (3] © < o (3] ©
— - - — — - - - — - - - — -

Figure 1V.3.12 Returns and A-GARCH volatility adjusted returns

returns (1V.3.3) with both the symmetric and the asymmetric GARCH volatilities. The results,
reported in Table 1V.3.6, indicate a considerable underestimation of VaR when the returns are

not adjusted.?

The above example demonstrates how volatility adjustment compares favourably with the

exponential weighting method in the previous section. The main advantages of using a
GARCH model for volatility adjustment are as follows:

e \We do not have to make a subjective choice of an exponential smoothing constant x. The
parameters of the GARCH model may be estimated optimally from the sample data.

2L But if we were to estimate the VaR during a particularly tranquil period, the VaR would be overestimated without the volatility

adjustment.
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e \\We are able to use a very large sample for the return distribution. In the above example
we used 3355 returns, and an even larger sample would also be perfectly feasible.

Table 1V.3.6 Historical VaR for S&P 500 on 31 March 2008

Quantile Unadjusted \olatility Adjusted
GARCH A-GARCH
0.10% 4.84% 7.50% 7.04%
1% 2.83% 4.18% 4.28%
5% 1.78% 2.69% 2.79%
10% 1.27% 2.11% 2.11%

Hence this type of volatility adjustment allows the VaR at very high quantiles to be estimated
reasonably accurately.

We end this subsection by investigating the effect of volatility adjustment on the scale
exponent that we might use to transform a 1-day historical VaR estimate into an h-day his-
torical VaR estimate. However, in the next subsection we shall describe a more sophisticated
method for computing h-day historical VaR, which uses a dynamic model, such as the GARCH
volatility adjustment models described above, and does not require the use of power law
scaling.

Recall that to estimate the values of the scale exponent shown in Table 1V.3.1, over 50 years
of daily returns on the S&P 500 were used. We now scale these returns to have constant
volatility, using (1V.3.3), this time using a simple EWMA volatility instead of a GARCH
model. It does not matter which volatility level we scale the series to, the estimated scale
exponent remains unchanged.?? Table 1V.3.7 reports the results, which are computed in an
Excel workbook in the case study folder for this subsection. They are calculated in a similar
way to the unadjusted scale exponents in Table 1V.3.1, but now the results are presented using
different values for the smoothing constant rather than different sample sizes.

Table 1\V.3.7 Estimated values of scale exponent for volatility adjusted S&P 500

Smoothing constant Quantile

3 0.1% 1% 5% 10%
0.98 0.4848 0.5402 0.5368 0.5192
0.95 0.4527 0.5236 0.5366 0.5250
0.9 0.3972 0.5057 0.5334 0.5335

In this subsection we have considered volatility adjustment at the portfolio level. That is,
we construct a returns series for the portfolio in the usual way, and then adjust this to have the

22 |n the spreadsheet the returns are scaled to have a volatility of 10%, but this can be changed and the user will see that it has no effect
on the scale exponent.
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required volatility. Later in this chapter, in Section 1V.3.5.2, we show how to volatility-adjust
individual risk factors for a portfolio, and we use a case study to compare the VaR based on
volatility adjustment at the risk factor level with the VaR based on portfolio level volatility
adjustment.

1IV.3.3.4 Filtered Historical Simulation

Barone-Adesi et al. (1998, 1999) extend the idea of volatility adjustment to multi-step his-
torical simulation, using overlapping data in a way that does not create blunt tails for the
h-day portfolio return distribution. Their idea is to use a parametric dynamic model of returns
volatility, such as one of the GARCH models that were used in the previous subsection, to
simulate log returns on each day over the risk horizon.

For instance, suppose we have estimated a symmetric GARCH model on the historical log
returns r,, obtaining the estimated model

82, = & + ar? + B2, (IV.3.9)

The filtered historical simulation (FHS) model assumes that the GARCH innovations are
drawn from the standardized empirical return distribution. That is, we assume the standardized
innovations are
e (IV.3.5)
o
where r, is the historical log return and 6, is the estimated GARCH daily standard deviation at
time t.

To start the multi-step simulation we set 6, to be equal to the estimated daily GARCH
standard deviation on the last day of the historical sample, when the VaR is estimated, and
also set ry to be the log return on the portfolio from the previous day to that day. Then we
compute the GARCH daily variance on day 1 of the risk horizon as

A2 A A AD A A2
07 =®+ & ry+36;.

Now the simulated log return on the first day of the risk horizon is 7, =¢,6, where a value
for ¢, is simulated from our historical sample of standardized innovations (IV.3.5). This is
achieved using the statistical bootstrap, which is described in Section 1.5.7.2. Thereupon we
iterate in the same way, on each day of the risk horizon setting

2, =o+ar2+B62 withs, =e6, fort=1,....h,

where ¢, is drawn independently of ¢,_; in the bootstrap. Then the simulated log return over a
risk horizon of h days is the sum #; +r, + ... + 7. Repeating this for thousands of simulations
produces a simulated return distribution, and the 1000% h-day FHS VaR is obtained as minus
the a quantile of this distribution.

We do not need to use a symmetric GARCH model for the filtering. In fact, the next example
illustrates the FHS method using the historical data and the estimated A-GARCH model from
the previous example.
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EXAMPLE IV.3.2: FILTERED HISTORICAL SIMULATION VAR FOR THE S&P 500 INDEX

Use daily log returns on the S&P 500 index from 2 January 1995 to 31 March 2008 to esti-
mate the 1000% 10-day VaR using FHS based on an asymmetric GARCH model with the
parameters shown in Table 1V.3.5. For o =0.001, 0.01, 0.05 and 0.1 compare the results with
the asymmetric GARCH volatility adjusted historical VaR that is obtained by scaling up the
daily VaR estimates using a square-root scaling rule.

SOLUTION The starting values are taken from the results in Example 1V.6.1: the A-GARCH
annual volatility on 31 March 2008, when the VaR is estimated, is 27.82% and the daily log
return on 31 March 2008 is 0.57%. Then each daily log return over the risk horizon is sim-
ulated by taking the current A-GARCH estimated standard deviation and multiplying this by
an independent random draw from the standardized empirical returns.?® The results from one
set of 5000 simulations are shown in the second column of Table 1V.3.8. The third column,
headed ‘scaled volatility adjusted VaR’, is obtained by multiplying the results in the last col-
umn of Table 1V.3.6 by +/10. The results vary depending on the simulation, but we almost
always find that the FHS 10-day VaR is just slightly lower than the volatility adjusted VaR
based on square-root scaling up of the daily VAR for every quantile shown.

Table 1V.3.8 Scaling VaR versus filtered historical simulation

Quantile Current volatility 10% volatility
FHS Scaled volatility FHS Scaled volatility
adjusted VaR adjusted VaR
0.10% 21.13% 22.25% 9.09% 8.00%
1% 12.79% 13.53% 5.44% 4.86%
5% 7.96% 8.84% 3.18% 3.18%
10% 5.70% 6.67% 2.29% 2.40%

Now suppose the current A-GARCH volatility were only 10% instead of 27.82%. Readers
can change the starting value in cell D3 of the spreadsheet to 0.6325%, i.e. the daily stan-
dard deviation corresponding to 10% volatility, and see the result. The results from one
set of 5000 filtered historical simulations are shown in the fourth column of Table 1V.3.8
and the scaled up volatility adjusted VaR corresponding to 10% volatility is shown in the
last column. Now, more often than not, the FHS VaR is greater than the scaled volatility
adjusted daily VaR at the extreme quantiles but not, for instance, at the 10% quantile. Why is
this s0?

Looking again at Figure 1V.3.11, we can see that the average level of volatility over our
historical sample was below 20%. In fact, the average estimated A-GARCH volatility was
16.7% over the sample. So on 31 March 2008 the volatility was higher than average and in
the absence of an extreme return during the risk horizon it would revert toward the long term
average, as GARCH volatilities do, which in this case entails reverting downward. By contrast,
the 10% volatility is below average so it will start reverting upward toward 16.7% over the risk
horizon, in the absence of an extreme return during this period.

23 As with the Monte Carlo VaR spreadsheets, we have reduced the number of simulations in the simulation spreadsheets so that they
fit on the CD-ROM. Copy the spreadsheet to your hard disk first, then fill down columns E to AH of the spreadsheet, so that thousands
of simulations are used to compute the results.
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But there is no mean reversion in a square-root scaling of daily VaR. Indeed, this type of
scaling is theoretically incorrect when we use a GARCH model for volatility adjustment.®
It assumes the volatility remains constant over the risk horizon and does not mean-revert at
all. Square-root scaling corresponds to an i.i.d. normal assumption for returns, which certainly
does not hold in the FHS framework. Hence, when adjustment is made using a GARCH model,
the scaled volatility adjusted VaR will overestimate VaR when the current volatility is higher
than average, and underestimate VaR when volatility is lower than average.

IV.3.4 PRECISION OF HISTORICAL VALUE AT RISK AT
EXTREME QUANTILES

When using very large samples and measuring quantiles no more extreme than 1%, the volatil-
ity adjustment and filtering described in the previous section are the only techniques required.
For daily VaR you just need to estimate the required quantile from the distribution of the
volatility adjusted daily portfolio returns, as described in Section 1V.3.3.3. And when VaR
is estimated over horizons longer than 1 day, apply the filtering according to your volatility
adjustment model, as described in Section 1V.3.3.4.

But it may be necessary to compute historical VaR at very extreme quantiles when it is
impossible to obtain a very large sample of historical returns on all assets and risk factors.
For instance, economic capitalization at the 99.97% confidence level is a target for most firms
with a AA credit rating, but it is impossible to obtain reliable estimates of 0.03% VaR directly
from a historical distribution, even with a very large sample indeed.

To assess historical VaR at very extreme quantiles —and also at the usual quantiles when the
sample size is not very large — one needs to fit a continuous distribution to the empirical one,
using a form that captures the right type of decay in the tails. This section begins by explaining
how kernel fitting can be applied to the historical distribution without making any parametric
assumption about tail behaviour. We then consider a variety of parametric Or semi-parametric
techniques that can be used to estimate historical VaR at extreme quantiles.

IV.3.4.1 Kernel Fitting

In Section 1.3.3.12 we explained how to estimate a kernel to smooth an empirical distribu-
tion. Having chosen a form for the kernel function, the estimation algorithm fits the kernel by
optimizing the bandwidth, which is like the cell width in a histogram. Fitting a kernel to the
historical distribution of volatility adjusted returns allows even high quantiles to be estimated
from relatively small samples. The choice of kernel is not really important, as shown by Sil-
verman (1986), provided only that a reasonable one is chosen. For empirical applications of
kernel fitting to VaR estimation see Sheather and Marron (1990), Butler and Schachter (1998)
and Chen and Tang (2005).

To illustrate this we use Matlab to apply the Epanechnikov, Gaussian and lognormal kernels
to a distribution of volatility adjusted returns shown in Figure 1V.3.13. This series is of daily

24 However, it is not necessarily theoretically incorrect when we use an EWMA model for volatility adjustment, because there is no
mean reversion in EWMA volatility forecasts. If there is a power law for scaling, as discussed in Example 1V.6.1, then we can use this
law to scale up daily EWMA volatility adjusted VaR to longer horizons.
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Figure 1V.3.13 EWMA adjusted daily returns on S&P 500

returns on the S&P 500 index, and the volatility adjustment has been made using a EWMA
volatility with smoothing constant 0.95. We fit a kernel to a sample size of 500, 1000, 2000 and
3000 returns. In each case the returns are standardized to have mean 0 and variance 1 before
fitting the kernel. Figure 1V.3.14 compares the three kernel densities with the standard normal
density to give a visual representation of the skewness and excess kurtosis in the empirical
densities. Whilst the Gaussian and Epanechnikov kernels are almost identical, the lognormal
kernel fits the data very badly indeed.

Now without fitting a kernel, and for each fitted kernel, we estimate the 1-day VaR at 5%,
1%, 0.1% and 0.05% significance levels. The results are shown in Table 1V.3.9 and, as usual,
they are expressed as a percentage of the portfolio value. Note that there are two sets of results
labelled ‘No kernel’: the first uses the Excel PERCENTILE function, which we know has
some peculiarities;® and the second uses the Matlab quantile function which is more accurate
than that of Excel.?

As remarked above, the lognormal kernel provides a poor fit and so the results should not
be trusted. Whilst the VaR results for the Gaussian and Epanechnikov kernels are very similar
(they are identical in exactly one-half of the cases) those for the lognormal kernel are very
different and are very far from the quantiles that are calculated by Excel and Matlab. The
Matlab quantiles estimate the VaR fairly accurately; in fact, the results are similar to those
obtained using the Gaussian and Epanechnikov kernels. However, there is a marked difference
between these and the quantiles estimated using the Excel function.

Another feature of the results in Table 1V.3.9 is that the VaR estimates are sample-specific.
The sample of the most recent 2000 returns clearly has heavier tails than the sample of the most
recent 3000 returns or the sample of the most recent 1000 returns, since the VaR estimates are
greatest when based on a sample size 2000.

25 The problems associated with the Excel PERCENTILE function are described in Section 1.3.2.8.
26 Many thanks to my PhD student Joydeep Lahiri for providing the empirical results in this section.
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Figure 1V.3.14 Kernels fitted to standardized historical returns

1IV.3.4.2 Extreme Value Distributions

Kernel fitting is a way to smooth the empirical returns density whilst fitting the data as closely
as possible. A potential drawback with this approach is that the particular sample used may
not have tails as heavy as those of the population density. An alternative to kernel fitting is to
select a parametric distribution function that is known to have heavy tails, such as one of the
extreme value distributions. Then we fit this either to the entire return distribution or to only the
observations in some pre-defined lower tail. A generalized extreme value (GEV) distribution
can be fitted to the entire empirical portfolio return distribution, but the generalized Pareto
distribution (GPD) applies to only those returns above some pre-defined threshold u.

Another potential drawback with kernel fitting is that it does not lend itself to scenario
analysis in the same way as parametric distribution fitting. When a parametric form is fitted
to the returns it is possible to apply scenarios to the estimated parameters to see the effect
on VaR. For instance, having estimated the scale and tail index parameters of a GPD from
the historical returns over some threshold, alternative VaR estimates could be obtained by
changing the scale and tail index parameters.?” For instance, we might fit the GPD to only

27 This approach is advocated by Longin (2000, 2005), McNeil and Frey (2000), Aragones et al. (2001) and Gencay and Selcuk (2004).
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Table 1V.3.9 Historical VaR based on kernel fitting

Significance Level

5% 1% 0.10% 0.05%

No kernel (Excel)

Sample size 500 0.95% 1.35% 1.69% 1.75%
1000 1.05% 1.52% 2.32% 2.43%
2000 1.09% 1.72% 2.91% 3.26%
3000 1.03% 1.66% 2.73% 3.08%

No kernel (Matlab)

Sample size 500 1.03% 1.47% 1.88% 1.88%
1000 1.04% 151% 2.42% 2.53%
2000 1.10% 1.73% 3.09% 3.65%
3000 1.03% 1.68% 2.82% 3.26%

Gaussian kernel

Sample size 500 1.04% 1.48% 1.92% 2.00%
1000 1.03% 1.58% 2.35% 2.46%
2000 1.06% 1.61% 2.98% 3.53%
3000 1.04% 1.59% 2.80% 3.21%

Epanechnikov kernel

Sample size 500 1.04% 1.52% 1.92% 2.00%
1000 1.09% 1.58% 2.40% 2.51%
2000 1.12% 1.67% 3.05% 3.53%
3000 1.04% 1.65% 2.80% 3.21%

Lognormal kernel

Sample size 500 0.82% 1.29% 1.66% 1.75%
1000 0.84% 1.30% 2.22% 2.33%
2000 0.92% 1.48% 2.76% 3.19%
3000 0.77% 1.46% 2.57% 2.99%

those returns in the lower 10% tail of the distribution. Provided that the historical sample is
sufficiently large (at least 2000 observations), there will be enough returns in the 10% tail to
obtain a reasonably accurate estimate of the GPD scale and tail index parameters, 3 and &.

It can be shown that when a GPD is fitted to losses in excess of a threshold u there is a
simple analytic formula for the 100a% VaR,

3
Vaquu—}—%((lri‘a) _,ﬁ), (IV.3.6)

where n is the number of returns in the entire sample and n, is the number of returns less than
the threshold u. It is therefore simple to generate VaR estimates for different values of 3 and &.
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EXAMPLE IV.3.3: USING THE GPD TO ESTIMATE VAR AT EXTREME QUANTILES

Estimate the parameters of a GPD for the EWMA volatility adjusted daily returns on the
S&P 500 that were derived and analysed in Section 1V.3.4.1. Base your results on the entire
sample of 14,264 returns and also on a sample of the 5000 most recent returns. In each case
set the volatility in the adjusted returns to be 10%.% Use only the returns that are sampled
below a threshold of (a) 20%, (b) 10%, (c) 5% and (d) 1%. Hence, estimate the 1-day VaR
using (I1V.3.6) and compare the results with the historical VaR that is estimated without fitting
a GPD. In each case use a risk horizon of 1 day and confidence levels of 99%, 99.9% and
99.95%, and express the VaR as a percentage of the portfolio value.

SOLUTION The returns are first normalized by subtracting the sample mean and dividing
by the standard deviation, so that they have mean 0 and variance 1. Then for each choice
of threshold, the GPD parameters are estimated using maximum likelihood in Matlab.?® The
results are reported in the two columns headed *‘GPD parameters’ in Table 1V.3.10.

Table 1V.3.10 Estimates of GPD parameters (Matlab)

Sample size 14,264 GPD parameters Confidence level for VaR
Threshold n, u g B 99% 99.9% 99.95%
1% 143 —2.5740  —0.3906 7.6815 1.69% 6.01% 7.27%
5% 713 —1.6097  —0.2425 4.4892 2.87% 6.43% 7.16%
10% 1426 —1.1960 —0.1870 3.3786 3.37% 6.10% 6.71%
20% 2853 —0.7203  —0.1289 2.2795 3.26% 5.30% 5.81%

Historical VaR (no GPD) 1.69% 3.00% 3.87%

Sample size 5000 GPD parameters Confidence level for VaR

Threshold n, u g B 99% 99.9% 99.95%
1% 50 —2.5292  —0.4036 8.2127 1.67% 6.52% 7.83%
5% 250 —1.5360  —0.2305 4.4352 2.94% 6.59% 7.37%
10% 500 —1.1708  —0.1776 3.3405 3.42% 6.22% 6.86%
20% 1000 —0.6930 —0.1194 2.2280 3.27% 5.36% 5.89%
Historical VaR (no GPD) 1.67% 3.36% 4.86%

Since our GPD parameters were estimated on the normalized returns, after we compute
the VaR using (1V.3.6) we must then de-normalize the VaR estimate, i.e. multiply it by the
standard deviation and subtract the mean. This gives the results shown in Table 1V.3.10 under
the three columns headed ‘Confidence level for VaR’. The GPD results should be compared to
the historical VaR without fitting a GPD, i.e. the VaR that is estimated from a quantile of the
volatility adjusted return distribution. This is shown in the last row of each half of the table.

28 These data end on 31 December 2004, when the S&P500 index volatility was approximately 10%.
29 Many thanks again to Joydeep Lahiri for providing these results.
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The GPD VaR is greater than the volatility adjusted VaR that is obtained without the GPD
fit, and substantially so for extreme quantiles. For instance, at the 0.05% quantile and based
on the most recent 5000 returns, the GPD VaR based on a threshold of 10% is 6.86% of the
portfolio value, whereas the historical VaR without fitting the GPD is estimated to be only
4.86% of the portfolio value.

Notice how the historical VaR that is obtained without fitting the GPD is greatly influenced
by the sample size. Even after the volatility adjustment, 5000 returns are simply insufficient
to estimate VaR at the 99.95% confidence level with accuracy. At this level of confidence we
are looking for a loss event that has no more than 1 chance in 2000 of occurring.

The GPD VaR estimates are not greatly influenced by the sample size, but they are influ-
enced by the choice of threshold. A threshold of 10% or 20% is adequate, but for thresholds
of 5% and 1% there is insufficient data in the tail to fit the GPD parameters accurately starting
with a sample size of 5000.%

An important point to learn from this example is that although the GPD VaR estimates are
fairly robust to changes in sample size, they are not robust to the choice of threshold. This is
one of the disadvantages of using the GPD to estimate VaR, since the choice of threshold is
an important source of model risk. Advocates of GPD VaR argue that this technique allows
suitably heavy tails to be fitted to the data, and so it is possible to estimate historical VaR at
very high confidence levels such as 99.97%. Another convenient aspect of the approach is that
the expected tail loss (also called the conditional VaR) has a simple analytic form, which we
shall introduce in Section 1V.3.7.2.

IV.3.4.3 Cornish-Fisher Approximation

The Cornish—-Fisher expansion (Cornish and Fisher, 1937) is a semi-parametric technique that
estimates quantiles of non-normal distributions as a function of standard normal quantiles
and the sample skewness and excess kurtosis. In the context of historical VaR, this technique
allows extreme quantiles to be estimated from standard normal quantiles at high significance
levels, given only the first four moments of the portfolio return or P&L distribution.

The fourth order Cornish—Fisher approximation x, to the o quantile of an empirical
distribution with mean 0 and variance 1 is

Xq Rz —I—E(zz—l)—l-iz (22—3)—%—22 (222—5) (IV.3.7)
fT e 2474 36 ’ o

where z, = ®~1(«) is the a quantile of a standard normal distribution, and T and % denote the
skewness and excess kurtosis of the empirical distribution. Then, if (L and & denote the mean
and standard deviation of the same empirical distribution, this distribution has approximate o
quantile

xo = FoG + 1. (IV.3.8)

30 With a threshold of 1% and original sample size 5000, there are only 50 returns in the tail that we use to fit the GPD parameters. In
fact, the Matlab optimizer did not converge properly, so the results in the penultimate row of Table 1V.3.10 are unreliable.



Historical Simulation 171

EXAMPLE IV.3.4: CORNISH-FISHER APPROXIMATION

Find the Cornish—Fisher approximation to the 1% quantile of an empirical distribution with
the sample statistics shown in Table 1V.3.11. Then use this approximation to estimate the 1%
10-dayVaR based on the empirical distribution, and compare this with the normal linear VaR.

Table 1V.3.11 Sample statistics used for Cornish—Fisher
approximation

Annualized mean 5%
Annualized standard deviation 10%
Skewness -0.6
Excess kurtosis 3

SOLUTION The normal linear VaR estimate is
®1(0.99) x 10% x ,/10/250 = ®1(0.99) x 2% = 4.65%.

To calculate the Cornish—Fisher VaR we first ignore the mean and standard deviation, and
apply the expansion (1V.3.7) to approximate the 1% quantile of the normalized distribution
having zero mean and unit variance.

Since zp o = ®%(0.01) = — 2.32635 we have 22, =5.4119, so using (IV.3.7),*

X001 &~ —2.32635 — 0.1 x 4.4119 — 0.125 x 2.32635 x 2.4119 + .01 x 2.32635 x 5.8238
= —3.3334.

The mean and variance over the risk horizon are 0.2% and 2%, so (1V.3.8) becomes
x001 = —3.3334 x 0.02 + 0.002 = —0.0647.

Hence, based on the Cornish-Fisher expansion, the 1% 10-day VaR is 6.47% of the portfolio
value, compared with 4.65% for the normal linear VaR.

Figure 1V.3.15 illustrates the error arising from a Cornish-Fisher VaR approximation when
the underlying return distribution is known to be a Student ¢ distribution. We consider three
different degrees of freedom, i.e. 6, 10 and 50 degrees of freedom, to see how the leptokurtosis
in the population influences the fit of the Cornish—Fisher approximation to the true quantiles.
The horizontal axis is the significance level of the VaR — in other words, the quantile that we
are estimating with the Cornish—Fisher approximation.

The Student ¢ VaR is given by (1V.2.62). This is the ‘true’ VaR because, for a given value of
the degrees of freedom parameter, the quantiles along the horizontal axis are exactly equal to
the Student ¢ quantiles. Then, for each quantile, the error is defined as the difference between
the Cornish—Fisher VaR and the Student ¢ VaR, divided by the Student ¢ VaR.

31 Note that skewness and kurtosis are unaffected by the scaling and normalizing transforms.
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Figure 1V.3.15 Error from Cornish-Fisher VVaR approximation

With 50 degrees of freedom the population has very small excess kurtosis (of 0.13) and the
Cornish—Fisher approximation to the VaR is very close. In fact, the Cornish-Fisher approxi-
mation underestimates the true VaR by only about 2%. When the population has a Student ¢
VaR with 10 degrees of freedom, which has an excess kurtosis of 1, Cornish—Fisher also
underestimates the VaR, this time by approximately 10%. But the errors that arise when the
underlying distribution is very leptokurtic are huge. For instance, under the Student ¢ distri-
bution with 6 degrees of freedom, which has an excess kurtosis of 3, the Cornish—Fisher VaR
considerably underestimates the VaR, except at extremely high confidence levels. We con-
clude that the Cornish—Fisher approximation is quick and easy but it is only accurate if the
portfolio returns are not too highly skewed or leptokurtic.

1V.3.4.4 Johnson Distributions

A random variable X has a Johnson SU distribution if

(XT‘E) =sinh<¥> , (IV:3.9)

where Z is a standard normal variable and sinh is the hyperbolic sine function.® The parameter
& determines the location of the distribution, A determines the scale, y the skewness and § the
kurtosis. Having four parameters, this distribution is extremely flexible and is able to fit most
empirical densities very well, provided they are leptokurtic.

It follows from (1V.3.9) that each a quantile of X is related to the corresponding standard
normal quantile z, = ®~*(a) as

x(,:)\sinh<z°‘8_y> +E. (IV:3.10)

32 This is one of three translations of normal distributions introduced by Johnson (1954).
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Let X denote the h-day return on a portfolio. Then the 100a% h-day historical VaR of the
portfolio, expressed as a percentage of the portfolio value, is —x,.** Hence, under the Johnson
SU distribution

VaR;,,a =—\ sinh(zu ;V) - E (|V311)

Thus, if we can fit a Johnson SU curve then we can use (1V.3.11) to estimate the VaR.

It is possible to fit the parameters of the Johnson SU distribution, knowing only the first
four moments of the portfolio returns, using a simple moment matching procedure. For the
examples in this chapter, this moment matching procedure has been implemented in Excel
using the following algorithm, developed by Tuenter (2001):

[ERN

. Set w=exp(3?).
. Set

N

7+6 12
=(4+2|? - ——1"— -2
ne(seelor (s |) -2

where % is the sample excess kurtosis.
3. Calculate the upper bound for w:

1/2

ot — (—1 + 2+ 2))1,2)
4. Calculate the lower bound for w:
w'ver = maX(wq, w,),
where w; is the unique positive root of w* 4 2w® + 3w? — % — 6 =0, and w, is the unique

positive root of (w — 1) (w + 2)* = 2, where 7 is the sample skewness.
5. Find w such that »'™" < » < @ and

2
(w—1—m) <m+2+%n> =7
6. Now the parameter estimates are:

§= (Inw)™*2,

¥ 2wm

_1_ 1/2
638, where 9= —sign (t) Sinh_1|:<(w+l)(w 1 m)) }

R 282 1/2
)\. == ’
<(03— 1) (w cosh 26+1)>

Ao o G(w—m—1)"?
EZM—S|gn(T)%

’

where (1 and 6 are the mean and standard deviation of the portfolio returns.

33 And, as usual, if X denotes the portfolio’s P&L then —x, is the VaR in nominal terms.
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Note that there are three numerical optimizations involved: first in steps 3 and 4 of the algo-
rithm we use Goal Seek twice to find the upper and lower bound for w, and then in step 5 we

apply Solver.

EXAMPLE I1V.3.5: JOHNSON SU VAR

Estimate the Johnson 1% 10-day VaR for a portfolio whose daily log returns are i.i.d. with
skewness —0.2 and excess kurtosis 4, assuming that the mean excess return is 2% per annum

and the portfolio’s volatility is 25%.

SOLUTION Figure 1V.3.16 illustrates the spreadsheet that is used to implement Tuenter’s
algorithm. Hence, we calculate the 1% 10-day VaR of the portfolio as 13.68% of the port-
folio’s value, using a Johnson SU distribution to fit the sample moments. This should be
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Figure 1V.3.16 Tuenter’s algorithm for Johnson VaR

34 Note that the Solver constraints do not allow for strict inequality, hence we increase the lower bound and decrease the upper bound

by a very small amount.
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compared with 11.55% of the portfolio value, under the assumption that the portfolio returns
are normally distributed.

We know from the previous subsection that Cornish—Fisher VaR is not a good approximation
to VaR at extreme quantiles when the portfolio return distribution is very leptokurtic. Can
Johnson’s algorithm provide better approximations to the historical VaR at extreme quantiles
than Cornish—Fisher VaR? Figure 1V.3.17 demonstrates that the answer is most definitely yes.
This figure shows the errors arising from the Johnson approximation to the same Student ¢
populations as those used in Figure 1V.3.15, and they are much lower than those arising from
the Cornish—Fisher approximations in Figure 1V.3.15.
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Figure 1V.3.17 Error from Johnson VaR approximation

The error in the VaR estimate is virtually zero when the Johnson distribution is fitted to
the Student ¢ distribution with 50 degrees of freedom (excess kurtosis 0.13) and the error
when it is fitted to the Student ¢ VaR with 10 degrees of freedom is also negligible. Under the
Student ¢ distribution with 6 degrees of freedom (excess kurtosis 3), the Johnson VaR slightly
underestimates the VaR at quantiles between 5% and 10% and slightly overestimates it at
quantiles between 0.001% and 5%.

IV.3.5 HISTORICAL VALUE AT RISK FOR LINEAR PORTFOLIOS

Until now we have been focusing on the general features of historical VaR, and the ways in
which the standard ‘vanilla’ historical simulation can be extended to improve the sample data
(e.g. via volatility adjustment) and the accuracy of historical VaR at high levels of confidence.
Throughout we have assumed that a risk factor mapping has already been applied to obtain
a historical sample of returns for the portfolio. We shall now focus on the use of risk factor
mapping in the context of historical VaR.

This section provides a sequence of five case studies that describe the estimation of
historical VaR for different types of portfolio. We consider bonds, loans and swaps port-
folios and any other interest rate sensitive portfolio that is represented by a sequence of
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cash flows, as well as stock and commodity portfolios. As in Chapter 1V.2, we assume
that readers are already familiar with the portfolio mapping methodologies for each type
of portfolio.®* Our main focus will be on the link between the asset class and the structure
of the historical simulation model. For the sake of clarity, we shall not be as concerned
with the precision of the estimate as we were in the previous section. We do not attempt
to improve the accuracy of the VaR estimate by fitting a kernel or a parametric distribution,
or by using Cornish—Fisher or Johnson approximations, and we shall only use the simple
square-root-of-time scaling rule. However, in most of the case studies we shall examine
the effects of a volatility adjustment. Even so, in order not to detract from our main focus,
volatility adjustment is based on a simple EWMA model rather than a more sophisticated
GARCH model.*

We begin in Section 1V.3.5.1 with a case study that demonstrates how historical simula-
tion is applied to an interest rate sensitive portfolio that is represented as a sequence of cash
flows. We compare the historical VaR estimate to that obtained using a parametric linear VaR
model on the same data. The case study in Section 1V.3.5.2 considers a simple domestic stock
portfolio, estimating the historical VaR first without and then with a risk factor mapping.
We explain how to decompose the total historical VaR into systematic VaR due the risk fac-
tors and the residual or specific VaR. The case study in Section 1V.3.5.3 examines a large
international portfolio of stocks and bonds, and explains the decomposition of total system-
atic VaR into equity, interest rate and forex stand-alone VaRs, and into the corresponding
marginal VaRs, all in the historical VaR framework. Section 1V.3.5.4 estimates the interest
rate, forex and total historical VaR of an international bond position and the final case study
in Section 1V.3.5.5 is on the decomposition of historical VaR for an energy trader in crack
spreads.

1IV.3.5.1 Historical VaR for Cash Flows

This case study uses historical simulation to estimate the VaR of the UK bond portfolio
that was the subject of the case study in Section 1V.2.4. As before, we assume that the
cash flows on the portfolio have been mapped to a set of standard maturity interest rates,
which are the UK spot interest rates at monthly maturities up to 5 years. So these are the
portfolio’s risk factors. The portfolio’s PV01 vector on 31 December 2007 was depicted in
Figure IV.2.2.

In this case study we shall estimate the historical VaR of the same portfolio, but now we
need a very large sample of data on the risk factors. We shall use daily data starting on 4
January 2000 and ending at the time the VaR is estimated, i.e. on 31 December 2007. Thus we
have 8 years of data on the interest rate risk factors, and these are illustrated in Figure 1V.3.18.
From the figure it is clear that UK interest rates passed through several different regimes
during the sample period.

To find the historical VaR we must map the portfolio to its risk factors. Thus a historical
series of daily P&L on the portfolio is constructed by holding the P\VVO1 vector of the portfolio

35 These are fully described in Chapter I11.5.

3 The RiskMetrics™ smoothing constant % =0.94 is used in the text, but readers may change this in the spreadsheets. From
Section 1V.3.3.4 we know that a univariate GARCH model is likely to lead to more accurate results, but since the volatility adjustment
is not the focus of this section we use an EWMA volatility for simplicity.
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Figure 1V.3.18 Bank of England short curve

constant.®” We apply this to each of the daily returns over the sample period using the risk
factor mapping

60
APV, ~—% "PVO1, x AR,, (IV.3.12)
i=1

which we already know may also be written in matrix form as
APV, ~ —p'Ar, (IvV.3.13)

where p = (PV01,, PVO01,,..., PV0lg) is the PVO1 vector and Ar, = (AR, ARy, ...,
ARg,)' is the vector of daily interest rate changes at time t. The 100a% 1-day historical VaR
is minus the o quantile of the P&L distribution. For longer holding periods the historical VaR
is obtained using a square-root scaling rule.®®

Such a large sample of daily data will allow the historical VaR to be estimated at fairly high
confidence levels with reasonable accuracy. But if a long historical sample is used, we know
from our discussions in Section 1V.3.3.3 that a volatility adjustment should be applied to the
daily changes in interest rates before estimating the VaR. A simple EWMA volatility estimate
will be used, and the quickest and most effective way to do this is not on the risk factors,
but on the P&L of the portfolio. The EWMA volatility of the portfolio’s P&L is shown in
Figure 1V.3.19.%

First suppose that we are estimating VaR at the end of the sample, i.e. on 31 December
2007. At this time UK interest rate volatility was greater than it had been since January 2004,
so a volatility adjustment will increase the dispersion of the return distribution. Figure 1V.3.20

37 The spreadsheet for this case study allows the reader to change the PV01 vector and the start and end dates that define the historical
sample. The time of the VaR estimate refers to the end date and we assume the P01 vector represents the portfolio at whichever time
the VaR is measured.

38 However, Table IV.3.2 suggests that a scale exponent slightly greater than 0.5 may be appropriate.

39 The smoothing constant is assumed to be 0.9 for this figure, but this may be changed by the reader in the spreadsheet within the
case study workbook. Recall that the choice of smoothing constant is entirely ad hoc.
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Figure 1V.3.19 EWMA volatility of P&L on UK gilts portfolio
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Figure 1V.3.20 Empirical distribution of UK gilts portfolio P&L on 31 December 2007

depicts the portfolio’s daily P&L distribution, before and after the volatility adjustment, based
on the entire sample.

The excess kurtosis in the unadjusted P&L is huge — it is approximately 45 — but after
volatility adjustment this is very significantly decreased. In fact, after volatility adjustment the
excess kurtosis over the entire sample is —0.2267, so the adjusted P&L distribution is very
slightly mesokurtic rather than leptokurtic. The volatility adjustment increases the small posi-
tive skewness from approximately 0.03 to approximately 0.07. Since negative excess kurtosis
and positive skewness both serve to reduce the VaR relative to the normal VaR, after volatility
adjustment we expect the historical VVaR based on the entire sample to be very slightly less
than the normal VaR.
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Table 1V.3.12 reports the 10-day historical VaR for the portfolio, with and without volatil-
ity adjustment, at the 1% and the 0.5% significance levels.”> This is compared with the
corresponding normal VaR, again with and without volatility adjustment.*

Table 1V.3.12  Historical versus normal VaR for UK bond portfolio

1% 0.5%

Unadjusted Volatility adjusted Unadjusted Volatility adjusted

Historical VaR  £193,585 £259,231 £227,359 £283,567
Normal VaR £198,579 £272,846 £219,651 £301,635

Table 1V.3.12 is based on the entire sample from 5 January 2000 to 31 December 2007. But
in the spreadsheet for this case study the reader may change the sample used to estimate the
VaRs, including the time at which the VaR is measured, and by changing the P01 vector the
reader can also change the portfolio.

IV.3.5.2 Total, Systematic and Specific VaR of a Stock Portfolio

The case study in this section considers the historical VaR for a simple portfolio consisting of
two stocks in the S&P 100 index, Apple Inc. and Citigroup Inc.*? First we measure the total
VaR using a long historical series of portfolio returns, based on a constant portfolio weights
assumption. Then we decompose the total VaR into a systematic VaR component, due to
movements in the S&P 100 index, and a specific VaR component, due to the idiosyncratic
movements of each stock price.

The total historical VaR of an equity portfolio is calculated from a distribution of ‘recon-
structed” portfolio returns, in this case where the portfolio weights are held constant at their
current values. Denote the date on which the VaR is calculated by T and the date of each set of
returns on the stocks by ¢, fort =1, ..., T. On each date ¢ in the historical sample the portfolio
return is calculated as

re=W.X, t=1,...,T, (IV.3.14)

where w is the portfolio weights vector at time T (when the VaR is measured) and X, is the
vector of stock returns at time ¢.

Since the historical VaR will better reflect current market conditions when volatility
adjusted stock returns are used, the next example compares the historical VaR estimates with
and without volatility adjustment. However, the volatility adjustment may be computed in two
different ways:

(i) adjust the volatility of each stock return and then apply the portfolio weights, or
(i) apply the weights to obtain the portfolio returns r, and then volatility-adjust these
returns.

40 However, even using the entire sample, only 10 or 12 observations lie in the 0.5% tail. Thus for the reasons explained in
Section 1V.3.4, the 0.5% VaR results should be treated with caution.

4L In Section 1V.2.4.1 we estimated the 1% 10-day normal linear VaR for this portfolio as £176,549, but this estimate was based only
on daily data during 2007.

42 Data were downloaded from Yahoo! Finance, symbols APPL and C.
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The complication with (i) is that an individual volatility adjustment of each stock return
would change their correlation, unless we apply the volatility adjustment in the context of
a multivariate system. For this, following Duffie and Pan (1997) we use the Cholesky matrix
of the covariance matrix of stock returns, in place of the square root of the variance of each
stock return, in the volatility adjustment (1V.3.3).

To be more specific, suppose there are % stock returns and a total of T observations on
each return in the historical sample. Denote the GARCH (or EWMA) covariance matrix
of the stock returns at time ¢ by V, and denote the Cholesky matrix of V, by Q,. In other
words,

V.(x)=V,=Q.Q..
Now set
% =Q;Qx, t=1,...,T. (IV.3.15)
Then

V(%) =V (QrQ %) =Q:rQ ' V) (QrQ ") =Qr(Q7'Q)(QQ ) Q= QrQ, = V.

Thus X, is a vector of stock returns at time ¢ that is adjusted to have the constant covariance
matrix Vr, forall t=1, ..., T.

The following example demonstrates the differences that will arise, depending on the
method of volatility adjustment.*® As in the previous subsection, so as not to make the illustra-
tion too complex, instead of using a GARCH model we shall use a simple EWMA volatility
adjustment for the daily VaR, with square-root scaling over a 10-day risk horizon.

EXAMPLE IV.3.6: VOLATILITY-ADJUSTING HISTORICAL VAR FOR A STOCK PORTFOLIO

You hold a portfolio on 21 April 2007 that has 30% invested in Citigroup Inc. stock and 70%
invested in Apple Inc. stock. Assuming the returns are i.i.d., use daily returns data from 2
January 2001 to 21 April 2008 on the closing prices of these stocks to estimate the 1000% 10-
day historical VaR, for « =0.001, 0.01, 0.05 and 0.1 and compare the results obtained before
and after volatility adjustment.

SOLUTION The evolution of the prices of the two stocks over the sample period is shown
in Figure 1V.3.21. The Citigroup price is on the left-hand scale and the Apple price is on the
right-hand scale. Figure 1V.3.22 shows the EWMA volatilities of each stock over the sample
period. For the volatility adjustment in this case study we shall employ the same value for
the smoothing constant in all the EWMA models that are applied, for both the estimation of
portfolio betas and volatility adjustment of returns series. This is an ad hoc choice, so let us fix
. at the RiskMetrics™ value of 0.94.% Whilst both stock price volatilities displayed significant
time variation over the sample period, and their volatility in April 2008 is high, both stocks

43 The spreadsheets for this example and for Example 1V.3.7 are in the case study workbook. Note that it is easier to use row vectors
rather than column vectors for the stock returns, so in case (a) we apply (1V.3.15) in the form

% =x (QrQ; ")

44 The reader can change the smoothing constant values in the workbook for this case study. The only way we can estimate an
optimal value in an EWMA is to use maximum likelihood to estimate a normal symmetric integrated GARCH model, as explained in
Section 11.4.2.
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Figure 1V.3.22 EWMA volatilities of Apple and Citigroup

also had high volatilities in the early part of the sample. Hence, it is unclear whether volatility
adjustment would reduce or increase the historical VaR estimates.

The unadjusted historical VaR is calculated using the Excel PERCENTILE function on the
portfolio returns series (1V.3.14), where w; = (0.3, 0.7)" and the returns vector x, isa 2 x 1 vec-

tor of the unadjusted daily returns on Citigroup and Apple stocks at time t. We shall consider
three ways to obtain the volatility adjusted portfolio returns:

(a) Estimate the EWMA covariance matrix of the two stock returns. Then we can adjust

each of the stock returns to have constant volatility using (IV.3.15), and then we
compute (1V.3.14) using the adjusted returns for x..
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(b) Compute the portfolio’s returns in the usual way, then adjust these to have constant
volatility using (1V.3.3).

(c) Ignore the effect that volatility adjustment has on correlation and simply adjust each
stock return to have constant volatility using (1V.3.3), and then compute (1V.3.14) using
the volatility adjusted returns for x,.

Does the VaR change much, depending on the method used? Table 1V.3.13 reports the results.

Table 1V.3.13  Historical VaR with different volatility adjustments

Significance level 10% 5% 1% 0.1%

Unadjusted VaR 7.73% 10.47% 17.49% 29.26%
Method (a) 10.17% 13.41% 19.23% 25.55%
Method (b) 9.99% 13.11% 18.40% 25.43%
Method (c) 9.55% 12.29% 18.06% 25.21%

Clearly, some form of volatility adjustment is important. At low confidence levels
(e.g. 90%) the unadjusted VaR is lower than the adjusted VaRs, and the opposite is the case for
very high confidence levels (e.g. 99.9%). This implies that without the adjustment the histori-
cal return distribution is much more leptokurtic. But the method used to perform the volatility
adjustment makes only a small difference to the result. At every confidence level the greatest
VaR is obtained using method (a) and the lowest VaR is obtained using method (c), but the
results are similar.

Should we adjust the stock returns before computing the portfolio’s returns or adjust
the portfolio returns? The answer depends on computation time, if this is a constraint. For
instance, if we need to measure the VaR for many different portfolios in the same stock uni-
verse (or sharing the same risk factors) it may be more efficient to adjust each returns series
before the portfolios returns are formed, and the correct method to use is (a). That is, we
should use the entire covariance matrix to adjust the returns, rather than just the volatility of
each return separately. However, method (c) is quicker and easier than (a) and, although it is
approximate, the error it introduces is not large relative to the huge model risk that plagues
many VaR models.

When a portfolio is mapped to its risk factors we can decompose the total VaR of the port-
folio into the systematic VaR, due to changes in the risk factors, and the specific VaR which
is not captured by the risk factor mapping. We have done this before in the context of nor-
mal linear VaR. In that model the square of the total VaR is equal to the sum of the square
of the systematic VaR plus the square of the specific VaR. Unfortunately, there are no such
simple aggregation rules between total VaR, systematic VaR and specific VaR in either the
historical simulation or the Monte Carlo simulation VaR frameworks. Nevertheless we may
still decompose total VaR into systematic and specific components.

We aim to estimate the systematic and specific VaR of the Apple and Citigroup portfo-
lio, and to do this we must first estimate the portfolio betas with respect to an index; we
choose the S&P 100 index for illustration.* To ensure that these are as risk sensitive as

45 Data were downloaded from Yahoo! Finance, symbol " OEX.
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possible, we estimate the betas using EWMA instead of ordinary least squares regression.
This method was described in full when we first introduced factor models for equity portfo-
lios in Section 11.1.2, so we merely provide a spreadsheet in the case study that illustrates the
estimation of these betas, allowing the reader to change the smoothing constant. The S&P 100
betas corresponding to \ = 0.94 are shown in Figure 1V.3.23.
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Figure 1V.3.23 EWMA betas for Apple and Citigroup in S&P 100 index

The EWMA beta estimate varies over the sample period but it is only the current estimate
of the beta (i.e. the estimate in the last sample period, at time T) that is used to construct the
portfolio’s systematic returns. With a smoothing constant of 0.94, we obtain

B, =(1.5099,2.4312)" when T =21 April 2008,

(Iv.3.16)
B, =(2.4256,1.0831) when T =30 October 2006,
where the first element is the beta for Apple and the second is for Citigroup.®® Notice that
the beta of Citigroup rose considerably during the credit crisis at the end of the period. The
Citigroup beta was lower and less variable than the Apple beta in the earlier part of the sample,
but since the credit crunch in 2007 it has become the more risky of the two stocks.

Fixing the stock betas at their current values, we now compute the systematic part of the
portfolio return Y, using

Y= @wr)M, t=1,...,T, (IV.3.17)

where wy represents the weights and (3. is the beta vector at time T when the VaR is measured,
and M, is the index return at time ¢. In the next example we use the weights w = (0.3, 0.7)
as before, the market index is the S&P 100 and the betas are given by (1V.3.16).

46 This is assuming % = 0.94, but readers can see in the spreadsheet for this figure that higher values of % give lower values for both
betas.
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EXAMPLE IV.3.7: SYSTEMATIC AND SPECIFIC COMPONENTS OF HISTORICAL VAR

As in Example 1V.3.6, suppose you hold a portfolio that has 30% invested in Citigroup Inc.
stock and 70% invested in Apple Inc. stock. Using the S&P 100 index as the risk factor,
decompose the total 1% 10-day VaR of your portfolio, with and without a EWMA volatility
adjustment, into systematic and specific components. Estimate the VaR on 21 April 2008 and
compare your results with the VaR that is estimated on 30 October 2006 for the same portfolio,
i.e. with 30% invested in Citigroup and 70% invested in Apple. In each case, use data starting
on 2 January 2001 and express the VaR as a percentage of the portfolio value.

SoLuTIOoN We know from the previous example that our estimate of the total VaR of the
portfolio depends on whether we apply volatility adjustment and, if so, how this is performed.
The portfolio’s systematic returns are obtained using (IV.3.17). Figure 1V.3.24 shows the
results before and after volatility adjustment. Figure 1V.3.24(a) shows the returns adjusted
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Figure 1V.3.24 Systematic returns before and after volatility adjustment for the volatility on (a) 30
October 2006 and (b) 21 April 2008
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for the relatively low volatility on 30 October 2006, and Figure 1V.3.24(b) shows the returns
adjusted for the relatively high volatility on 21 April 2008.

The specific returns, which are the portfolio returns minus the systematic returns, are also
adjusted for volatility. Finally, we calculate the 1% 10-day historical VaR from the relevant
quantile of each distribution, obtaining the results shown in Table 1V.3.14. For comparison,
we also include the normal linear VaR based on the same data. Results for other portfolio
weights, data periods, significance levels and risk horizons can be generated by changing the
dates and parameters in the spreadsheet for this example in the case study workbook.

Table 1V.3.14  Total, systematic and specific VaR, US stock portfolio

Historical Normal
30 October 2006 Unadjusted \ol. adjusted Unadjusted \ol. adjusted
Total VaR 17.41% 5.84% 16.58% 6.32%
Systematic VaR 18.77% 5.98% 16.91% 6.34%
Specific VaR 15.11% 6.12% 14.17% 6.19%
21 April 2008 Unadjusted \ol. adjusted Unadjusted \ol. adjusted
Total VaR 17.49% 17.06% 16.31% 18.06%
Systematic VaR 16.79% 17.70% 14.76% 18.13%
Specific VaR 13.31% 17.60% 13.07% 17.65%

On 30 October 2006 the 1% 10-day total VaR of the portfolio was 17.41% of the portfolio
value before volatility adjustment but only 5.84% after adjusting for the low volatility lead-
ing up to this time. As Figure 1V.3.25(a) shows, the extreme volatility of the portfolio during
2001-2003 means that the historical VVaR will be much larger before the volatility adjustment.
The systematic VaR is greater than the total VaR of the portfolio, and even the specific VaR is
greater than the total VaR after the volatility adjustment.*’ It is again evident that the volatility
adjustment decreases the excess kurtosis of the returns to such an extent that it becomes neg-
ative. We can see this from the fact that the normal linear VaR estimates are greater than the
historical VaR estimates after the volatility adjustment, but not before.

A different picture emerges on 21 April 2008 (for which the systematic returns are shown in
Figure 1V.3.24(b)). The volatility at the time the VaR is measured was less than it was during
2001-2003 but higher than it was during 2004-2006, and so the volatility adjustment makes
little difference to the VaR estimate based on the period 2001-2008. Still, the volatility adjust-
ment alters the shape of the empirical distribution, slightly increasing the volatility but also
decreasing the excess kurtosis. Thus the normal VaR estimates still increase after the volatility
adjustment, and the historical systematic VaR, and the specific VaR again become greater than
the total VaR after the volatility adjustment.

IV.3.5.3 Equity and Forex VaR of an International Stock Portfolio

Because historical VaR is calculated as a quantile it does not obey simple aggregation rules,
such as the sub-additivity rule that applies to parametric linear VaR, whereby total linear VaR

47 This is true even for the normal linear VaR model, because the correlation between the market return and the specific return is large
and negative. When this correlation is negative it is quite possible for the total normal linear VaR to be less than both the systematic
VaR and the specific VaR, as can be seen from the formula (1V. 2.47).
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is never greater than the sum of the stand-alone linear VVaRs. Normal and Student ¢ VVaR obeys
the same rules as the variance operator, but historical VaR obeys the same rules as quantiles,
and quantiles obey very few rules.

Quantiles translate under continuous monotonic increasing transformations. That is, if the
variable X has o quantile x, then, for any continuous monotonic increasing function f, f(X)
has o quantile f(x,).“* We call this the monotonic property of quantiles. Time aggregation of
quantiles is also possible, but only under the assumption that portfolio returns are stable.*

However, aggregation of historical VaR across positions is not the same as monotonic trans-
formation or time aggregation. No aggregation rules such as sub-additivity apply, but this
does not imply that we cannot decompose and aggregate historical VaR. Indeed, dependen-
cies between returns play a very important role in reducing risk via diversification, and an
attractive feature of the historical model is that we do not capture any dependency using a
correlation matrix; instead the dependencies are implicit in the historical data.

We now present a case study to illustrate the disaggregation of total systematic VaR into stand-
alone and marginal VaR components, when the VVaR model is based on historical simulation.
Consider a UK investor holding a US and a UK stock portfolio on 21 April 2008. Suppose
70% of the total amount invested in pounds sterling is held in UK stocks and 30% is held
in US stocks. The US portfolio has a beta of 1.8 relative to the S&P 500 index and the UK
portfolio has a beta of 1.25 relative to the FTSE 100 index.

To assess the historical VaR for this portfolio we use daily log returns on the S&P 500
index, the FTSE 100 index and the £/$ exchange rate from 3 January 1996 to 21 April 2008.%°
The indices themselves are shown in Figure 1V.3.25, with the S&P 500 measured on the right-
hand scale and the FTSE 100 measured on the left-hand scale. The £/$ forex rate is shown in
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Figure 1V.3.25 S&P 500 and FTSE 100 indices, 1996-2008

48 To prove this, simply note that o = P(X < xq) = P(f(X) < f(xa))-
49 As shown in Section 1V.3.2.

50 Stock index data were downloaded from Yahoo! Finance, symbols “GSPC and “FTSE, and the exchange rate data were obtained
from the Bank of England website, http://www.bankofengland.co.uk/statistics/about/index.htm.
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Figure 1V.3.26. This illustrates the fairly steady decline in the US dollar from January 2001

until the end of the sample. Hence, anything the investor has gained from his exposure to US
stocks will be offset by losses on the currency position.
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Figure 1V.3.26 £/$ forex rate, 1996-2008

The VaR will be measured at an interesting time in equity markets. After several years of
very low volatility stock markets in the US and the UK, volatility had risen following concerns
about the Chinese and US economies and then in the aftermath of the sub-prime mortgage
crisis, whose effects were still impacting stocks in the financial sector in April 2008. Since
we use the entire sample with over 3000 observations, we shall estimate volatility adjusted
historical VaR.** Based on EWMA with » = 0.94, the volatilities of the FTSE 100 and S&P
500 index and of the forex rate are depicted in Figure 1V.3.27. By the end of the sample
equity volatilities had climbed to around 25%, but the £/$ exchange rate remained stable with
a volatility of approximately 10%.

We now explain the methodology that underpins the VaR disaggregation into equity and
forex components. The price in pounds sterling is the dollar price multiplied by the £/$
exchange rate; or, in symbols, Pf = P® x X*/*. Hence, the log equity return and the log forex
return are additive. In other words, the log return on the US stock portfolio in pounds sterling

is the sum of the log return on the US stock portfolio in US dollars and the log return on the
£/$ rate:

In(P. /P¥) =In(PE,, /PF) +In X5 /XEF)

Or, in alternative notation, »£ =+* + r£/*. Hence, the risk of a US stock portfolio to a UK
investor has an equity component, which is based on the risk of the dollar returns on the
portfolio, and a forex component, which is based on the risk of the £/$ forex rate.

51 To keep the spreadsheet focused on VaR disaggregation rather than volatility adjustment, we use a simple approach where we adjust

the volatility of the equity and forex parts of the portfolio returns individually, rather than using the full covariance matrix adjustment
that was described in the previous subsection.
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Figure 1V.3.27 \olatilities of UK and US stock markets and the £/$ exchange rate

We have 70% of our capital invested in the UK portfolio, with sterling price at time ¢
denoted by P£, and 30% of our capital is invested in the US portfolio, with sterling price P%.
In other words, the total portfolio has a sterling price

Pf = w, P + w,PL, (1V.3.18)

where w; = 0.7 and w, =0.3. From (1V.3.18) is follows that now it is the percentage return,
not the log return, that is additive. This means that to disaggregate the total VaR into equity
and forex components we must assume the percentage return is approximately equal to the log
return. We know from Section 1.1.4 that this approximation is accurate only when the return is
small, and this is another reason why it is standard to base historical VaR estimation on high
frequency (e.g. daily) data.

Let 3, denote the percentage beta of the UK portfolio with respect to the FTSE 100 at the
time the VaR is measured and let w, denote the proportion of total capital invested in the UK
portfolio. Similarly, let 3, denote the percentage beta of the US portfolio with respect to the
S&P 500 at the time the VaR is measured and let w, denote the proportion of total capital
invested in the portfolio US. Thus w; + w, = 1. In local currency, the daily log returns on the
UK and US portfolios are denoted by £ and £, and the daily log returns on the two equity
indices are written y£, and y3,, so r: =@3,y* fori=1, 2 and *=£ or $. The £/$ forex log return
is denoted by r£/* as before.

Now, applying the log return approximation to the percentage return, we may write the
sterling return on our combined portfolio of US and UK stocks as

£

£ £
T, R Wiry, + Wory,

£ $ £/$
= 17y, + (,02(1"2[ —+r / )

t

= (1B, + 02B,5,) + warf’. (IV.3.19)
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On the right-hand side above we have two components to the portfolio return:

1. the net equity return, w,B,y%, + ,3,y5;
2. the forex return, w,r/*,

The return on the total portfolio is the sum of these.

Using historical data for each of the series of log returns (i.e. on the FTSE 100 index,
the S&P 500 index and the £/$ exchange rate) we find the equity VaR and forex VaR from
the quantiles of the corresponding empirical return distributions. Each time series runs from
January 1996 until 21 April 2008. Adding the net equity return and forex return time series
together gives a time series for the net portfolio return, and the total risk factor VaR is obtained
from the quantile of this empirical distribution.

Table 1V.3.15 presents the 100a% h-day risk factor VaR, disaggregated into equity and
forex components. It is expressed as a percentage of the total sterling value of the US and
UK portfolios and it is based on the entire sample of over 3000 observations.>® The forex
stand-alone VaR is relatively small and the total VaR is only slightly more than the equity
stand-alone VaR. Total risk factor VaR is less than the sum of the equity VaR and the forex
VaR, although this need not always be the case with historical VaR, since it is measured as a
quantile rather than a volatility. Since the portfolio’s volatility has previously been both higher
and lower than the volatility at the time the VaR is measured, the volatility adjustment makes
little difference to the VaR. However, by changing the start and end dates in the spreadsheet,
readers can see that this is not always the case.

Table 1V.3.15 Decomposition of systematic VaR into equity and forex stand-alone components

h=1 h=10

Equity Forex Total Equity Forex Total

Unadjusted 1y 380%  0.37% 386% 12.03%  116%  12.22%
Volatility Adjusted %~ 7 429%  0.44% 437% 1355%  1.38%  13.83%
Unadjusted w—01%  615%  048%  6.34% 19.43%  1.52%  20.04%
Volatility Adjusted ' 546%  0.59%  548%  17.28%  187%  17.32%

We know from Section 1V.1.7.3 that we measure the marginal VaR by estimating the gradi-
ent vector g () of first partial derivatives of VaR with respect to the risk factor sensitivities. In
the parametric linear VaR framework there are analytic formulae that can be applied to obtain
the gradient vector, as for instance in Section 1V.2.2.5. But in the historical VaR model there
are no such analytical formulae. So we estimate g () using a first order finite difference, as
explained in Section 1.5.5. That is, we make a small perturbation in each of the risk factor sen-
sitivities in turn, and compute the first partial derivative of the total VaR with respect to that
sensitivity by dividing the resulting change in the total VaR by the small perturbation.>® The
risk factor sensitivities, in percentage terms, are 6 = (1, w,)" on the equity and forex returns
respectively.

52 Results for o = 1% and 0.1% and for h =1 and 10 days are shown here, but the reader may see other results by changing the values
of the VaR parameters in the spreadsheet labelled ‘VaR” in the case study workbook. You may also change the sample over which the
VaR is measured, the relative weights on the UK and US portfolios and the portfolio betas.

53 |f the sensitivity increment is too large the finite difference approximation to the gradient vector will not be accurate. We have set a
perturbation size of 0.1% for the results in Table 1V.3.18.
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Having estimated the gradient vector, we multiply each component in the vector by its
risk factor sensitivity, before perturbation, to obtain the corresponding marginal VaR. For the
portfolio in this case study the results are displayed in Table 1V.3.16. Based on the unadjusted
returns data from January 1996 to 21 April 2008, 92.29% of the total risk factor 1% 10-day
VaR is due to equity risk and only 7.71% is due to forex risk. At the 0.1% significance level
a slightly greater percentage of the VaR is due to equity risk. Note that when based on the
volatility adjusted returns (which we know usually have less kurtosis than unadjusted returns)
the contribution of forex risk to the total VaR is much smaller, and it can even be negative.

Table 1V.3.16 Historical marginal VaR for international stock portfolio

Percentage contribution to Equity Forex
total 10-day VaR

Unadjusted o=1% 92.29% 7.71%
\olatility adjusted o 102.62% —2.62%
Unadjusted 0 =0.1% 93.14% 6.86%
\olatility adjusted 99.68% 0.32%

1V.3.5.4 Interest Rate and Forex VaR of an International Bond Position

We now consider a case study where a UK bank buys £50 million nominal of an AA-rated
5-year US bond with an annual coupon of 4% on 21 April 2008. Since the bank needs to
purchase £50 million in US dollars to finance the purchase, the total return will also have a
currency component. So the risk factors are the US swap curve, which is AA-rated, and the
sterling—dollar exchange rate. We shall decompose the historical VaR into interest rate and
forex components.

Daily historical data on US swap rates from July 2000 until 21 April 2008 are shown in
Figure 1V.3.28.5* The swap curve is upward sloping, except for two relatively flat periods
during 2001 and during 2006-2007, and short term rates varied more than longer terms rates
over the sample. The highest value for the 1-year swap rate was 7% at the beginning of the
sample and its lowest value was about 1%, in June 2006.

The interest rate VaR is based on a P&L distribution that can be estimated in two approx-
imately equivalent ways, either using the PV01 approximation to the bond P&L given by
(IV.3.12) or by revaluing the bond directly. For the first approach the PV01 vector for the
bond is calculated in the spreadsheet labelled VaR, using the approximation described in
Section 1V.2.3.2, and this is the PVO1 vector reported in the last row of Table 1V.3.17. This
table also shows the price P of the bond per £100 nominal, and the number of units of £100
nominal that the bank purchases for £50 million cash, which is given by N =50 x 10° x P~2.
Holding this PVO1 vector constant, we apply (IV.3.12) with the historically observed time
series of basis point changes to swap rates. This gives a time series of P&L on the bond that
is shown in column H of the spreadsheet labelled ‘VaR’ in the case study workbook.

54 The data on swap rates were downloaded from http://www.federalreserve.gov/releases/h15/data.htm, the exchanges rates were
downloaded from http://www.bankofengland.co.uk/statistics/about/index.htm, and the S&P 500 index data were obtained from Yahoo!
Finance, symbol “GSPC.
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Figure 1V.3.28 US swap rates
Table 1V.3.17 Bond position
Bond characteristics Maturity (years) 1 2 3 4 5
Cash (Em)  £50 Cash flow 4 4 4 4 104
Coupon 4% Swap curve on 21/04/08 2.93% 3.09% 3.34% 3.58% 3.78%
p 101.1398 PV of cash flow 3.89 3.76 3.62 3.48  86.39
N 494,365 PVOL1 (£) £187  £361  £520 £663  £20,576

Another way to derive a historical P&L distribution for a bond position is to apply the
historical daily basis point changes to the current swap curve, and then to revalue our cash
position keeping N constant. This gives the values in column | of the spreadsheet labelled
VaR. Then the historical P&L is obtained by taking each simulated value and deducting the
current value of £50 million. These P&L are shown in column J of the same spreadsheet. Note
that the two approaches give almost identical results.5®

The total VaR is based on the US dollar P&L distribution, and the dollar price at any point
in time is the price in pounds multiplied by the $/£ exchange rate. The forex VaR is estimated
from the historical distribution of daily log returns on the $/£ exchange rate, and the P&L
distribution for the total VaR is obtained by converting the position value in column I into US
dollars, and then recalculating the P&L. To find the relevant exchange rate to apply for each
day, we apply the log return on the forex on that day to the current forex rate, i.e. the rate at
the time the VaR is measured. The resulting P&L is shown in column L.

In each case the VaR is minus the a quantile of the daily P&L distribution, and the 1-day
VaR estimates are multiplied by the square root of the risk horizon (in days) to estimate the
corresponding h-day VaR.%® The results for 1% 10-day VaR are given in the spreadsheet in
both pounds sterling and US dollars, and the sterling figures are displayed in Table 1V.3.18.

55 For a simple bond such as this, both are fast and straightforward calculations, but the P\01 approximation would be preferable if
full revaluation of the portfolio is computationally burdensome.

56 We cannot calculate the total VaR using a P01 approximation, e.g. by converting the P01 vector into dollar terms. This is because
that way the P&L would be zero whenever interest rates do not change, even though there could be a loss on the currency position.
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Table 1V.3.18 VaR decomposition for international bond position

Interest Rate VaR (PV01 approx.) £1,381,833
Interest Rate VaR (direct valuation) £1,374,072
Forex VaR £2,042,953
Total VaR £2,319,324

As already mentioned, it makes very little difference whether we estimate the interest rate
VaR using the P01 approximation or the bond evaluation method. The forex VaR is greater
than the interest rate VaR, and the total VaR is less than the square root of the sum of the

squared component VaRs, which indicates a small or negative dependency between the £/$
rate and the swap rates.

IV.3.5.,5 Case Study: Historical VaR for a Crack Spread Trader

In this subsection we consider a trader in crack spread futures. There are two crack spreads,
i.e. the difference between the heating oil futures price and the WTI crude oil futures price of
the same maturity, and the difference between the gasoline futures price and the WTI crude
oil futures price of the same maturity. NYMEX facilitates crack spread trading in its futures
markets by treating both legs of the trade as a single transaction. Each futures contract is for
1000 barrels, priced in US dollars per barrel.

Because spreads can have negative values, it makes no sense to compute percentage returns
on these risk factors, for the reasons explained in Section 1.5.5. Instead we compute the daily
P&L on the crack spread futures and compute the VaR directly in nominal terms. We shall
calculate the historical VaR of the entire portfolio, and then decompose the total VaR into the
VaR due to the heating oil crack spread and the VaR due to the unleaded gasoline crack spread.
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Figure 1V.3.29 Three-month crack spread futures prices

Our risk factors are constant maturity futures on each spread for 1, 2, 3, 4, 5 and 6 months
ahead.”” The case study workbook contains over 20 years of daily data on these constant

57 These were derived from the prices of traded futures using linear interpolation.
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maturity futures, and the reader may use the spreadsheet labelled “VaR’ in this workbook
to estimate the historical VaR, with and without volatility adjustment, using any start and
end dates during this sample. The 3-month crack spread futures prices from 2 January 1996
to 1 August 2006, the day when the VaR is estimated, are shown in Figure 1V.3.29. The
trader’s positions in crack spread futures, and their prices on 1 August 2006, are shown in
Table 1V.3.19.%¢

Table 1V.3.19 Crack spread book, 1 August 2006

Prices m1 m2 m3 m4 m5 m6
HO_WTI ($/barrel) 12.47 14.02 15.61 16.96 18.07 18.52
UL_WTI ($/barrel) 20.69 14.39 10.05 6.76 5.37 4,78
Positions m1 m2 m3 m4 m5 m6
No. Contracts HO_WTI 100 50 50 0 0 -250
No. Contracts UL_WTI -50 -100 0 0 150 100
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Figure 1V.3.30 EWMA volatilities of heating oil crack spread futures P&L

Figures 1V.3.30 and 1V.3.31 show the volatilities of the crack spread futures P&L, calculated
as an exponentially weighted moving average of squared daily changes in the futures price
with a smoothing constant of 0.94.%° These graphs display terrific variability in spread futures
volatilities, so it is advisable to apply a volatility adjustment to the portfolio’s P&L, and we
shall use the EWMA volatilities shown in Figures 1V.3.30 and 1V.3.31 to derive a simple
volatility adjustment, as described in Section 1V.3.3.3. Since volatility was relatively high on

58 Of course, there are no traded futures at exactly these maturities, but we assume the positions have been mapped to the standard
maturities as explained in Section 111.5.4.
59 The volatilities of the 1-month crack spread futures are omitted because they are excessively volatile.



194 Value-at-Risk Models

30
—UL_WTIm2
254 — UL_WTIm3
------- UL_WTI m4
204 ] UL_WTI m5
UL_WTI m6
154 i
0tk
s AR
}4-. ; g (
“u}r\..“' * T
0 T T T
© N~ ©
® 9 P
S < <
S8 S

Figure 1V.3.31 EWMA volatilities of gasoline crack spread futures P&L

1 August 2006, the volatility adjusted VaR on 1 August 2006 is likely to be much greater than
the VaR based on unadjusted P&L.

In the case study workbook we hold the positions constant, at their values shown in
Table 1V.3.19, and simulate a historical series for the P&L on each futures position. The P&L
series is simulated by multiplying the fixed number of contracts by the absolute change in
the value of the spread on each day in the historical sample, after the volatility adjustment
if this is used. Then we sum the P&L on each day due to (a) the six positions on heat-
ing oil crack spread futures of different maturities, and (b) the six positions on unleaded
gasoline crack spread futures of different maturities, and (c) the 12 positions over all the
futures. This gives three historical P&L series: one for the heating oil crack spread posi-
tions, another for the gasoline crack spread positions, and a third for the total positions.
The historical VaR is calculated by finding the quantile of the simulated P&L distribu-
tion and then multiplying this quantile by —1000, since each futures contract is for 1000
barrels.

The reader may change the positions, the VaR parameters and the period over which the VaR
is estimated in the spreadsheet labelled “VaR’. The 1% 10-day VaR results for the positions in
Table 1V.3.19, with and without volatility adjustment, are given in Table 1V.3.20. The volatility
adjustment increases the VaR very considerably, since the spreads were unusually volatile at
the time when the VaR is measured. The total VaR is much less than the sum of the two
stand-alone VaRs, but still greater than the square root of the sum of the squared stand-alone
VaRs, because there is a high positive correlation between the spreads.

Table 1V.3.20 Total VaR and component VaRs for a crack spread trader

1% 10-day VaR HO_WTI UL_WTI Total

VaR (Unadjusted) $ $661,578 $673,036 $1,246,270
VaR (Volatility adjusted) $ ~ $1,666,862  $1,391,788 $2,577,317
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IV.3.6 ESTIMATING EXPECTED TAIL LOSS IN THE
HISTORICAL VALUE-AT-RISK MODEL

Section 1V.2.11 derived analytic formulae for expected tail loss in parametric linear VaR mod-
els. This was possible because the model makes an assumption about the functional form of
the return distribution. In the historical VaR model the ETL must be estimated directly, simply
by taking the average of all the losses in the tail below the VaR. The exception is when a
parametric distribution or approximation has been fitted to the historical distribution. In this
case it is sometimes possible to derive an analytic formula for ETL.

In this section we first present some analytic formulae for the ETL when the historical
distribution is fitted with a generalized Pareto distribution, a Johnson SU distribution and
when the VaR is estimated using a Cornish—Fisher expansion. We end with a case study that
compares the historical ETL estimates that are derived using these formulae with the historical
ETL that is estimated directly, as the average of the losses that exceed the VaR.

IV.3.6.1 Parametric Historical ETL

From formula (1.3.68) derived in Section 1.3.3.10 for the mean excess loss in the generalized
Pareto distribution, it immediately follows that

VaR
ETLa=VaR(,+B+1§—E“, (1V.3.20)

where the parameters (3 and & are estimated by fitting a GPD to excess losses and VaR, is
given by (1V.3.6).

The other two ETL formulae are derived from the transformation of the random vari-
able into a standard normal variable. Using the fact that the standard normal 100a% ETL
is a~tg(Z,),% for a Johnson SU distribution we have

+E£. (IV.3.21)

-1 o
ETLuzisinh<%f‘)y)

Finally, it follows from (I\V.3.7) that the ETL under the Cornish—Fisher expansion is
approximated by

ETL.=f(0 '9(Z.)) 6 — i, (1V.3.22)

where
" 22

flx)=x+ é(x2 — l) + %x(xz —3) — T—x( x? —5) .
IV.3.6.2 Empirical Results on Historical ETL

We now present a case study that compares several estimates of the historical ETL. Using
volatility adjusted log returns on the S&P 500 from 4 January 1950 until 9 March 2007, a GPD

60 This is proved in Section 1V.2.11.1.
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has been fitted to the excess returns over a threshold u, and the Cornish—Fisher expansion and
the Johnson SU distribution have been fitted to the first four moments of the empirical returns.
We compare the results from applying (1V.3.20)—(1V.3.22) with the results from the empirical
ETL, estimated as the average of the losses in excess of the VaR, and with the ETL under the
assumption that the returns are normally distributed.

There are over 14,000 returns in the sample, which allows for a comparison of results at very
high significance levels. Of course the Cornish—Fisher and Johnson ETL can be estimated
from a very much smaller sample, because they require only the first four moments of the
empirical return distribution. However, the GPD requires a considerable amount of data, since
it is fitted only to the excess losses over a certain threshold.

We set significance levels 1%, 0.1% and 0.05%, corresponding to confidence levels of 99%,
99.9% and 99.95% respectively, and the results from estimating the daily VaR using the dif-
ferent models are displayed in Table 1V.3.21. As usual the VaR estimates are reported as a
percentage of the portfolio value at the time the VaR is estimated. The Johnson VaR estimates
are generally closer to the GPD estimates but they do not suffer the disadvantage of the GPD
VaR estimates, i.e. that they are sensitive to the choice of threshold. Moreover, as described
in Section 1V.3.4.4, estimation of Johnson SU parameters is straightforward, using the algo-
rithm developed by Tuenter (2001). This algorithm is implemented in the spreadsheet for this
case study.

Table 1V.3.21 Estimates of GPD parameters and historical VaR estimates

GPD parameter estimates Significance level

Threshold n, u i3 §] 1% 0.1% 0.05%
1% 143 —2.574 —0.3906 7.6815 1.69% 6.01% 7.27%
5% 713 —1.6097 —0.2425 44892 2.87% 6.43% 7.16%
10% 1426 —1.1960 —0.1870 3.3786 3.37% 6.10% 6.71%
20% 2853 —0.7203 —0.1289 2.2795 3.26% 5.30% 5.81%
Johnson VaR 3.57% 5.10% 5.60%

Cornish—Fisher VaR 2.48% 5.06% 5.96%

Empirical VaR 1.69% 3.00% 3.87%

Normal VaR 1.52% 2.03% 2.16%

Table 1V.3.22 compares the daily historical ETL estimates based on a normal approxima-
tion to the return distribution, the empirical distribution. Notice that those based on the GPD,
Johnson and Cornish—-Fisher parametric fits. The empirical returns have an excess kurtosis of
4.93 and a very significant negative skewness. As a result the normal ETL estimates are far too
low, and all the non-normal parametric ETL estimates exceed the empirical ETL. Even when
the empirical ETL is based on 14,000 returns, the 0.1% ETL estimates are based on only 14
observations and the 0.05% ETL estimates are based on only 7 observations. Hence, they are
likely to be imprecise.

Tables 1V.3.21 and 1V.3.22 indicate that there is a considerable degree of model risk asso-
ciated with estimating VaR and ETL using historical simulation. There are very significant
differences between the results that are obtained using different enhancements to the simula-
tion model, particularly at very high confidence levels. So what advice, if any, can we glean
from these diverse results?
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Table 1V.3.22 Comparison of ETL from parametric fits to historical return

distribution
GPD (Threshold) Significance level

1% 0.1% 0.05%
GPD (1%) 4.87% 7.98% 8.88%
GPD (5%) 4.70% 7.57% 8.16%
GPD (10%) 4.73% 7.02% 7.54%
GPD (20%) 4.22% 6.03% 6.48%
Johnson 3.47% 6.33% 7.31%
Cornish-Fisher 4.18% 5.81% 6.34%
Empirical 2.29% 4.48% 5.56%
Normal 1.74% 2.21% 2.33%

It is unlikely that risk analysts will be working with a sample having more than a few thou-
sand observations, and the smaller the sample, the greater the model risk arising from the
choice of parametric or semi-parametric method that is used to estimate the VaR and ETL. If
the analyst does have a very large sample and therefore considers the use of the GPD, it seems
better to use a relatively high threshold such as 20%, so that the tail contains a larger sample
of returns.

IV.3.6.3 Disaggregation of Historical ETL

Historical ETL can be aggregated and disaggregated just like historical VaR, so we may com-
pute stand-alone ETLs corresponding to different sub-portfolios. But, unlike historical VaR,
the ETLs are always sub-additive. We now illustrate the disaggregation methodology with an
extension of the case study in Section 1V.3.5.3, where we disaggregated the total systematic
VaR for an international equity portfolio consisting of US and UK stocks into equity and forex
stand-alone components. In this case study we estimate the 100a% h-day historical ETL for
the same portfolio.

The results for the 1% 10-day historical VaR and ETL estimated on 21 April 2008, using
the same data as in Section 1V.3.5.3, are displayed in Table 1V.3.23. The upper part of the
table shows the 1% 10-day historical VaR based on both unadjusted and EWMA volatility
adjusted returns. These are identical to those reported in Table 1V.3.15 for a significance level
of 1% and h = 10. The lower part of the table displays the ETL estimates. These are estimated
directly, by averaging the returns that exceed the VaR.

Table 1V.3.23  Stand-alone equity and forex ETL for an international stock

portfolio

VaR Equity Forex Total
VaR (Unadjusted) 12.03% 1.16% 12.22%
V4R (Adjusted) 13.55% 1.38% 13.83%
ETL Equity Forex Total
ETL (Unadjusted) 14.78% 1.33% 15.41%

ETL (Adjusted) 15.21% 1.57% 15.58%
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In this case it happens that the volatility adjustment has as little effect on the ETL as it has
on the VaR estimates. This is because the VaR is measured on 21 April 2008 at a time when the
volatility was not far from its historical average. However, readers may generate other results
by changing the start and end date for the calculations in the spreadsheet labelled ‘ETL’ in the
case study workbook, as well as the VaR parameters and the EWMA smoothing constant for
the volatility adjustment. When the end date is during one of the more volatile or tranquil years
the volatility adjustment would have a more significant effect. For instance, when the VaR is
measured on 21 April 2006, which was a particularly tranquil period for US and UK equities,
the volatility adjusted ETL at any significance level is much lower than the unadjusted ETL.
The effect of the volatility adjustment is also more pronounced at significance levels different
from 1%. Since the volatility adjusted returns have a small but negative excess kurtosis in this
case, the effect is to decrease the ETL at higher confidence levels (such as for « = 0.1%) and
increase the ETL at lower confidence levels (such as for a = 10%).

IV.3.7 SUMMARY AND CONCLUSIONS

Historical simulation is a very popular approach to VaR estimation because it makes no
parametric assumptions about the behaviour of risk factors. It only assumes that their future
behaviour will be similar to their historical behaviour. Most importantly, it makes no assump-
tion about the correlations, or more generally the dependencies, between the risk factors.
Standard historical VaR estimates are based only upon the multivariate distributions of the
assets or risk factors that are observed empirically, in a sample of historical returns. The
historical distribution of portfolio returns or P&L is constructed by keeping the portfolio’s
holdings, weights or risk factor sensitivities constant at their current value. Then the historical
VaR is calculated directly from the appropriate quantile of this distribution.

There are many challenges that must be overcome for a successful implementation of his-
torical VaR. One of the main problems is that, on the one hand, a large sample is required
to measure historical VaR at high confidence levels accurately, but on the other hand large
samples are likely to cover long historical periods where markets have been through regimes
that may be quite different from the current regime. In that case, the historical VaR estimate
may not be representative of the portfolio’s current market risk, unless the risk horizon is
extremely long.

If historical VaR estimates are required for a long term risk horizon, then it would be entirely
appropriate to use a long historical sample period covering many different regimes; it is an
advantage to have data that cover many possible scenarios — who knows what could happen
over the next year? However, unless funds are locked in (as is often the case for investing in
hedge funds), market VaR is a risk metric that is only relevant for relatively short term risk
horizons, because this horizon corresponds to the optimal liquidation or hedging period for
the portfolio. Then the different market characteristics experienced five or ten years ago can
bias the historical VaR estimate, so that it is not representative of the conditions that are likely
to prevail in markets over the next few days or weeks.

For this reason we strongly recommend that the reconstructed portfolio returns be adjusted
so that their conditional volatility is approximately constant over the entire sample period.
That is, we remove the volatility clustering from the historical portfolio returns, and impose
a constant volatility on the series, that is equal to the conditional volatility at the time that
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the VaR is estimated. In scenario analysis and stress testing, we could also adjust the constant
volatility so that it is equal to any prescribed value.

We can either adjust the individual risk factor (or asset) returns to have constant volatility,
provided we also change their conditional correlations, or adjust the reconstructed portfolio
returns or P&L to have constant volatility. The latter is often simpler since then only one
GARCH or EWMA model is required for volatility adjustment at the portfolio level. Volatility
adjustment can be extended to filtered historical simulation, and this methodology allows the
proper estimation of historical VaR over risk horizons that are longer than 1 day. That is, there
is no scaling of daily VaR estimates, using a square root or some other power law exponent.
Instead, we use multi-step simulation following a GARCH model.

A case study has demonstrated how critically important the sample size is to all VaR models,
not only historical VaR. We showed that VaR estimates from the different models based on
the same sample size and the same weighting of the data are relatively close, and much closer
than the VaR estimates from any one of the models when we change the historical sample size
by a considerable amount.

Volatility adjustment, and any subsequent filtering in multi-step simulations of returns over
the risk horizon, allows very large historical samples to be used, yet these samples still rep-
resent current market conditions. It is important to use very large samples when estimating
historical VaR and ETL at high levels of confidence, otherwise the quantile estimates will be
imprecise. Volatility adjustment makes the sample closer to being i.i.d., so that VaR estimates
become less sensitive to changes in sample size. So, at any level of confidence, the volatility
adjusted historical VaR estimates should be more robust, i.e. they should be less variable from
day to day, compared with unadjusted historical VaR estimates, especially those based on a
short sample period.

At extreme quantiles it is still difficult to estimate historical VaR and ETL, even when we
have several thousand observations in our sample. Certain non-parametric or parametric tech-
niques may be applied to improve the precision of the quantile estimate. For a non-parametric
fit we recommend the Epanechnikov kernel, although several other kernels would perform as
well. For a parametric fit, the Johnson SU distribution appears to have some advantages over
both the generalized Pareto distribution (GPD) and the Cornish—Fisher expansion. The GPD
VaR estimates are sensitive to the choice of threshold and the Cornish—Fisher estimates will
substantially overestimate VaR when data are very leptokurtic. However, the Johnson esti-
mates are robust to strong deviations from normality and do not depend on an arbitrary choice
of threshold.

When the historical distribution is fitted with a GPD or a Johnson SU distribution, or when
the VaR is estimated using a Cornish—Fisher expansion, it is possible to derive analytic for-
mulae for the conditional VaR, also called expected tail loss. The historical ETL estimates that
are derived using these formulae have been compared empirically with the historical ETL that
is estimated directly, as the average of the losses that exceed the VaR.

This chapter contains a large number of case studies on the estimation of historical VaR and
ETL for specific portfolios, including interest rate sensitive, equity, and commodity portfolios.
We have shown how to estimate the systematic VaR and specific VaR with historical simulation,
illustrating this with a portfolio of US stocks. We have also disaggregated systematic historical
VaR and ETL into stand-alone components. This is achieved by constructing sub-portfolios
that are sensitive to a given subset of risk factors, and then estimating the stand-alone VaR
from the quantiles of the return or P&L distribution of the relevant sub-portfolio. If required,
the volatility of each sub-portfolio can be adjusted to be constant at its current level. In several
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case studies we also considered positions in foreign currencies, and isolated the forex VaR
from the equity and interest rate VaR components.

Historical VaR may be disaggregated and aggregated, but it does not obey the same aggre-
gation rules as linear VaR. In particular, historical VaR need not be sub-additive. That is, it
is theoretically possible for the total systematic VaR to be greater than the sum of the stand-
alone VaR components. We have also demonstrated, again in the context of a case study, how
to estimate the historical marginal VaR. To calculate the marginal VaR, the gradient vector
must be estimated using finite differences, since there is no simple analytic formula for the
marginal VaR, as there is in the normal linear VAR model.

Time aggregation of historical VaR is also more complex than it is for normal linear VaR.
The normal linear model assumes that risk factor returns are i.i.d. and normally distributed,
and thus, under the assumption that the portfolio’s risk factor sensitivities are constant over the
next h days, we can scale a daily VaR estimate up to an h-day VaR estimate using a square-root
scaling rule. We call this the dynamic VaR estimate, because this type of scaling implicitly
assumes that the portfolio is dynamically rebalanced over the risk horizon, to maintain con-
stant risk factor sensitivities. Then, it is theoretically correct to aggregate historical VaR in this
framework, but only if we assume that the portfolio returns have a stable distribution.

However, the scale exponent for the aggregation need not be 0.5, as it is for the square-root-
of-time scaling of i.i.d. normal random variables. We have explained how the scale exponent
may be estimated from a large historical sample, if we assume it is drawn from a stable
distribution, and we have estimated the scale exponents corresponding to several major risk
factors, including equity indices, forex rates, interest rates and major volatility indices. Our
analysis indicates that, whilst distributions of equity and currency returns may scale with the
square root of time, distributions of interest rate changes are more ‘trendy’ and may require
a scale exponent greater than 0.5. Volatility, on the other hand, is rapidly mean-reverting and
hence should be scaled with an exponent less than 0.5. Since volatility is a main risk factor for
option portfolios, the time aggregation of historical VaR for dynamically rebalanced option
portfolios is quite complex, and we shall return to this in Section 1V.5.4.



V.4
Monte Carlo VaR

IV.4.1 INTRODUCTION

Monte Carlo simulation is an extremely flexible tool that has numerous applications to finance.
It is often used as a method of ‘last resort’ when analytic solutions do not exist, or when other
numerical methods fail. Its drawback has been the amount of time it takes to resolve a problem
accurately using simulation, but as computers become more powerful this disadvantage
becomes less relevant.

The purpose of this chapter is to provide a pedagogical introduction to Monte Carlo sim-
ulation with a specific focus on its applications to VaR estimation. There are two equally
important design aspects of Monte Carlo VaR: the sampling algorithm and the model to which
the algorithm is applied. Section 1V.4.2 focuses on the first of these. It begins by explaining
how pseudo-random numbers are generated. Then we introduce the sampling techniques that
are based on low discrepancy sequences, which are commonly termed quasi Monte Carlo
methods. The section then explains how to transform random numbers into simulations from
a parametric distribution for risk factor returns, a process called structured Monte Carlo. Then
we describe the technique of multi-step Monte Carlo, which is important for accounting for
the dynamic properties of risk factor returns, such as volatility clustering.

The main aim of this chapter is to describe the different types of statistical models for risk
factor returns that are used to underpin the simulation algorithm. A huge variety of static
and dynamic models are available: static models are based on the assumption that each risk
factor return is an independent and identically distributed process, in which case we only need
to specify the multivariate unconditional distribution for the risk factor returns. But we can
use a dynamic model to introduce time series effects such as volatility clustering and mean
reversion. In this case we must specify how the multivariate conditional distributions for the
risk factor returns evolve over time.

Section 1V.4.3 focuses on describing various parametric static and dynamic models that
are appropriate for different types of risk factor returns. As we know from previous chapters,
volatility clustering can be a very important feature to capture in the VaR estimate. So here
we apply exponentially weighted moving average and generalized autoregressive conditional
heteroscedasticity processes to model volatility clustering in a single risk factor returns series.
Later on, in Section IV.4.5.4, we give a practical example that illustrates the extension of this
framework to a multivariate setting.

Section 1V.4.4 focuses on modelling the interdependence between different types of risk
factor returns. First we describe the standard multivariate normal and multivariate Student
t distributions for i.i.d. returns. But Monte Carlo simulation is so flexible that we can very
easily use copulas instead of correlation as the dependence metric. We end the section with
a case study on the use of non-linear regression in the context of bivariate Monte Carlo
simulation.
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Section 1V.4.5 builds on the three previous sections to demonstrate how Monte Carlo
methods are used to estimate the VaR and expected tail loss of a portfolio, assuming it has
a linear mapping to its risk factors (Monte Carlo VaR for option portfolios is dealt with in the
next chapter). The section begins by outlining both static and dynamic (multi-step) algorithms
for estimating Monte Carlo VaR and ETL for a linear portfolio, based on a generic model for
the multivariate distribution of the risk factor returns.

Then we provide specific examples that are designed to emphasize different aspects of the
Monte Carlo algorithm and different features of the returns model. We begin by considering
cash-flow portfolios, firstly using different copulas to model credit spread changes and hence
to estimate the credit spread VaR, and secondly using Monte Carlo simulation on principal
component risk factors to estimate the interest rate VaR of a large portfolio of interest rate
sensitive securities. In the interest rate VaR example we focus on the efficiency gains from
dimension reduction and advanced sampling techniques, rather than on the specification of
the multivariate return distribution.

The next example illustrates the use of Monte Carlo with a multivariate normal mixture
distribution, using a stock portfolio to emphasize the advantages of this approach for scenario
analysis. Finally, we extend the volatility clustering simulation model that was introduced
earlier for a single risk factor, to a currency portfolio where forex log returns have a conditional
multivariate Student ¢ distribution and their dynamics are governed by a multivariate GARCH
model. We use another empirical example to demonstrate that the VaR estimate is significantly
affected by non-normality in conditional return distributions and by wvolatility and correlation
clustering in risk factor returns, even over a relatively short risk horizon such as 10 days.
Section 1V.4.6 summarizes and concludes.

Besides the technical tools for modelling VaR with Monte Carlo simulation, the main
message of this chapter is that we need to control two sources of model risk in Monte Carlo
VaR models: that stemming from simulation errors and that resulting from inappropriate
behavioural models for risk factor returns. There are many books about Monte Carlo tech-
niques that focus on methods for reducing simulation error, most notably the comprehensive
and classic text by Glasserman (2004). For this reason, | have provided only a short introduc-
tion to sampling methods and instead have devoted most of this chapter to the construction of
a statistical model for risk factor returns that provides an appropriate basis for Monte Carlo
VaR estimation.

There are many empirical examples for this chapter in Excel workbooks on the CD-ROM.
To reduce file size each workbook is saved using only 100 or 1000 simulations. Before use,
all the spreadsheets containing simulations and calculations on those simulations need to be
extended by the reader after copying the workbooks onto their hard drive. Just take the last
row of all the simulated vectors in each spreadsheet and fill down. | have turned the automatic
calculation of results to manual so that new simulations are not repeated each time the spread-
sheet is altered.! Due to the size constraints in Excel (especially before Excel 2007) many
of our empirical results in the text are based on only 10,000 simulations. This is sufficient
to illustrate the important points of each example, but without additional variance reduction
there will be substantial sampling error in the results.

L This is an Excel option, found in the Tools menu of Excel 2003 or in Excel 2007 under Options | Formulas from the Excel Office
button. Press F9 to repeat the calculations manually. Note that calculations are repeated on all open workbooks each time F9 is
pressed.
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IV.4.2 BASIC CONCEPTS

We begin this section by outlining some efficient algorithms for generating pseudo-random
numbers. Section 1.5.7 provided only a very brief and basic introduction to this vast subject,
so this section develops the material in a little more depth. Then we move on to advanced sam-
pling techniques for improving the efficiency of Monte Carlo simulation. We describe the use
of low discrepancy sequences to cover the hypercube with the minimum number of simulations,
and two simple variance reduction methods, i.e. antithetic sampling and stratified sampling.

By necessity, our treatment in these three subsections is extremely selective, and readers
interested in commercial implementation of Monte Carlo VaR models are advised to consult
texts that are specifically devoted to Monte Carlo algorithms and the control of simulation
error. As mentioned in the previous section, | can particularly recommend the classic textbook
written by Glasserman (2004).

It may be relatively straightforward, if time-consuming, to reduce sampling error, but it is
not at all straightforward to select the appropriate behavioural model for risk factor returns in
a Monte Carlo VaR framework.? So the next three sections will focus on the statistical aspects
of a Monte Carlo VaR model. This section of the chapter gives an introduction to univariate
and multivariate simulation and the subsequent estimation of Monte Carlo VaR, assuming that
we already know the appropriate risk factor returns model.

IV4.2.1 Pseudo-Random Number Generation

Random number generation is the first step in a Monte Carlo simulation algorithm. Its aim is
to produce a sequence of numbers between 0 and 1 that are uniformly distributed, independent
and non-periodic. That is, each number in the unit interval (0, 1) is equally likely to occur in
the sequence, the ith number is independent of the jth number for all i #j, and the sequence
does not repeat itself however long it becomes.

The only way to generate random numbers is to measure, without error, a physical pheno-
menon that is truly random. In practice computers generate pseudo-random numbers, which
should be impossible to distinguish from a set of realizations of truly independent standard
uniform random variables. These pseudo-random numbers are generated by an initial seed,
such as the time of the computer’s clock, and thereafter follow a deterministic sequence. In
Excel, the function RAND () produces a pseudo-random number.

A simple but common type of generator is a linear congruential generator. This takes the
form of an iteration that is based on the idea of congruence. For some fixed integer m, we say
that two integers x and y are congruent modulo m, written

x =y mod (m),

if m divides x — y.* To generate a linear congruential sequence we fix two positive integer
values m and ¢ greater than 1, start the sequence with a positive integer seed x, between 1 and
m — 1 and perform the iteration

xi41 =cx; mod (m), (Iv4.1)

2 Risk factor model selection requires very thorough backtesting, as described in Chapter V.6, and this can entail months of research.
3 See http://support.microsoft.com/kb/828795 for more details about their random number generator.
4 For instance, 2= 5mod(3).
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each time choosing the unique integer value for x,., in [1, m — 1]. Then, for each i set
u; = m~tx;, and the resulting sequence {uo, uy,u,, ..., uy} is our pseudo-random number
sequence where N is the number of simulations. The following example shows that m should
be a prime number.

EXAMPLE 1V.4.1: LINEAR CONGRUENTIAL RANDOM NUMBER GENERATION

Generate a sequence of pseudo-random numbers using (1V.4.1) withm =13, c=2and x, = 1.
What happens if you use the same values of ¢ and x, but set m =12?

SOLUTION  With m = 13 the sequence for x is
{1,2,4,8,3,6,12,11,9,5,10,7,1,2,4,8,3,6,12,11,9,5,10,7,...},

where “...” here means that the sequence continues to cycle through the same sub-sequence
{1,2,4,8,3,6,12,11,9,5, 10, 7}. Dividing the numbers in this subsequence by 13 gives a
sequence of 12 distinct pseudo-random numbers:

{0.0769, 0.1538, 0.3077, 0.6154, 0.2308, 0.4615, 0.9231, 0.8462, 0.6923, 0.3846, 0.7692, 0.5385} .

Now change the value of m from 13 to 12 in the spreadsheet for this example. The sequence
of integers is {1, 2, 4,8, 4, 8,4, 8, ...}. Whereas the first sequence had full periodicity, i.e. the
full set of integers between 1 and m — 1 are visited in the repeating subsequence, the second
sequence has a periodicity of only 2. Hence setting m =12, ¢ =2 is not a good choice for
generating a sequence of pseudo-random numbers.

All random number generators have a periodicity, i.e. at some point in the sequence the num-
bers start repeating themselves. But one of the reasons why linear congruential generators
are so popular is that they will have full periodicity if c is a primitive root of m.> In practice,
m is chosen to be a very large prime number so that the sequence does not repeat itself too
soon and very many distinct random numbers can be simulated in the cycle. That is, long
sequences of pseudo-random numbers are easier to generate if we choose m to be a very large
prime number.

A Mersenne prime is a prime number of the form 2" — 1, and many Mersenne primes are
known for very large values of n.5 For instance, one of the best generators, called the Mersenne
twister, sets m = 21997 — 1, Since this m is prime, there will be 2% — 1 distinct pseudo-
random numbers in the associated linear congruential generator.

IV.4.2.2 Low Discrepancy Sequences

Most portfolios have several risk factors, and simulations of a portfolio’s P&L distribution are
based on simulations of the returns on these risk factors. For this, we require a sequence of
random numbers for each factor, and if there are k risk factors we need to generate k such

5 We call c a ‘primitive root” of m if m — 1 is the smallest positive integer value of n such that ¢” =1 mod (m). In our example therefore,
212 =1mod (13) and n = 12 is the lowest power n of 2 such that 13 divides 2" — 1.

6 Marin Mersenne (1588-1648) was a French philosopher, mathematician and music theorist. For more details, see http:/en.wikipedia.
org/wiki/Mersenne.
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sequences. We label these {uy;, ..., w,}, Where, typically, the number of simulations N in
each sequence will be a very large number.”

For the ith simulation on the risk factor returns we start with a vector (uy;, ..., u,;) of num-
bers with each u; € (0, 1). For instance, if k=2, the ith simulation could be based on a vector
such as (0.643278,0.497123). This can be thought of as a point in the unit square, i.e. the
square with sides along the two axes from 0 to 1. The two elements represent the coordinates
of the point. If k = 3 the ith simulation is a point in the unit cube, and more generally the
vector (uy, ..., u,) is a point in the k-dimensional unit hypercube.

We now motivate the concept of the discrepancy of a sequence with a simple numerical
example.

EXAMPLE IV.4.2: DISCREPANCY OF LINEAR CONGRUENTIAL GENERATORS

Generate a sequence of pseudo-random numbers using the linear congruential generator
(IV.4.1) with m = 127 and ¢ = 3. Then plot the numbers (u;,u;1), i =1,2,... on the
two-dimensional unit cube.

SOLUTION The spreadsheet for this example is similar to that for the previous example. The
resulting plot of consecutive pseudo-random numbers, displayed in Figure 1V.4.1, shows that
the points are not uniformly covering the cube. Instead they lie along three distinct lines.
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Figure 1V.4.1 Consecutive pseudo-random numbers plotted as points in the unit cube

The feature illustrated in Figure 1V.4.1 is not particular to our choice of m =127 and ¢ =3,
and nor is it particular to a plot of two consecutive points. The same features are apparent

7 For instance, N = 100, 000 or 1,000,000. Smaller values for N are usually acceptable only if some variance reduction technique is
applied, as we shall see presently.
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in all linear congruential generators, and are evident in n-dimensional plots of n consecutive
numbers for n > 2. That is, the points generated by such generators will lie in proper subspaces
of the hypercube. This means that there can be large areas of the hypercube that contain no
points. But if the hypercube is not covered uniformly the final result of the Monte Carlo
simulation, which in our case is a VaR or ETL estimate, will not be robust. This is because
we would cover different areas of the hypercube each time we perform another set of N
simulations, starting with a different seed.

A low discrepancy sequence is a method for generating sequences of numbers that are not uni-
formly distributed random numbers at all; instead they are designed to cover the n-dimensional
hypercube uniformly. The name low discrepancy means that the deviations from a uniform
covering of the hypercube are minimal.® In other words, the purpose of a low discrepancy
sequence is to cover the hypercube without gaps, using fewer simulations than are required
from a pseudo-random generator, for the same uniformity of coverage.

After an initial seed, the remaining numbers in the sequence follow a deterministic path.
Common examples of low discrepancy sequences are the Faure and Sobol sequences, both
of which are based on van der Corput sequences. The technical details on generating these
sequences are very well described in Glasserman (2004, Chapter 5).

IV.4.2.3 Variance Reduction

The computation time required for generating large numbers of pseudo- or quasi-random
numbers is minimal. However, this is only the first step in Monte Carlo simulation. The com-
putation time required by the application of the VaR model can be huge, for example if it
requires complex models for repricing non-linear instruments on each set of simulations. For
this reason we try to restrict the number of simulations to be as small as possible without
sacrificing the accuracy of the resulting VaR or ETL estimate.

To assess the trade-off between speed and accuracy we need a measure of the extent to
which the VaR or ETL estimates change each time the simulations are repeated. A common
measure of this sampling uncertainty is the variance of the simulation error.

e When simulating a quantity such as an expected value or VaR, here simply denoted X,
the simulation error is defined as Xy — X, where X, denotes the estimator of X based on
N simulations.

o If the estimator is unbiased, E(Xy — X) =0, in other words, E(Xy) = X.

e Since X is a constant, although it is unknown, the variance of the simulation error is
equal to V(Xy).

If X denotes an expected value, then Xy=X is the sample mean based on N observations. Let
w and o denote the mean and standard deviation of the distribution of the underlying random
variable, X. By the central limit theorem, which is described in Section 1.3.5.2, we know that
the random variable

8 Low discrepancy sequences are sometimes called quasi-random numbers. See Glasserman (2004, Section 5.1.1) for several formal
definitions of discrepancy.
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A~

Xn— 1
Y =
c/m

has a distribution that converges to a standard normal distribution as N increases. In other
words, as N increases the distribution of X converges to a normal distribution with expecta-
tion . and variance N~'o?. Thus, the variance of the simulation error is approximately equal
to N~1o? for large N.

Now suppose X is an a quantile of an h-day portfolio return distribution. The asymptotic
distribution for the number of returns X (N, o) that are less than the a quantile is described
in Section 11.8.4.1. From this we know that as N increases, the distribution of the proportion
of returns that are less than the o quantile, i.e. Xy = N"X(N, a), converges to a binomial
distribution with expectation « and variance N~*a(1 — a). Hence the variable

XN — o
VN1l —o)

has a distribution that converges to a standard normal distribution as N increases. In other
words, the variance of the simulation error is approximately equal to N~*a(1 — ) for large N.

In both the cases above, the variance of the estimator decreases with N, that is, the accuracy
in our simulations increases as N increases. In other words, we should use as many simulations
as possible. But, as mentioned above, computation time can be a substantial constraint on the
size of N.

We now describe two sampling techniques that have the effect of decreasing the variance of
an estimator based on a given number of simulations. The simplest of these techniques, based
on antithetic variables, is illustrated in the next example.

EXAMPLE IV.4.3: ANTITHETIC VARIANCE REDUCTION

Suppose we wish to estimate the expected value of a standard uniform variable using just 20
simulations.

(a) Use the Excel random number generator to simulate 20 realizations {us, ..., us} On
independent standard uniform variables and repeat the simulations 10 times, each time
estimating the sample mean. Compute the sample standard deviation of the sample
means obtained from the 10 different simulations.

(b) Now repeat this process, but this time use the Excel random number generator to sim-
ulate only the first 12 random numbers {us, ..., u5,}. For the next 8 numbers simply
take 1 minus the first 8 of these 12 numbers. More generally, base your sample mean
estimates on the sample {u, ..., uy} Where, for some n such that 10 <n < 20, we set
w=u fori=1,...,n,andu;=1—u,_, fori=n+1,...,20.

For different values of n, compare the sample standard deviations obtained in case (a) and case
(b), and comment on your results.

SoLUTION In the spreadsheet for this example we use the Excel RAND( ) function to gen-
erate 20 pseudo-random numbers for part (a). Then, in each set of simulations, the first 12
realizations {us, ..., us,} for (b) are identical to those in (a), but for the last 8 realizations
they are {1 —uy, ..., 1 —ug}. Note that the last 8 realizations are still drawn from a standard
uniform distribution, but they are no longer independent of the first 8 realizations.
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With a sample size of only 20 the sampling variation over the 10 sets of simulations is
very large in both cases. Nevertheless, the standard deviation of the means in (b) is virtually
always considerably less than the standard deviation of the means (a). Readers can verify this
by pressing F9 to repeat the simulations many times.

More generally, the value for n can be anywhere between 10 and 20. If n =10 we obtain the
maximum possible variance reduction, in fact in this case the sample mean estimates are all
identical, so their variance is zero. Thus the variance reduction decreases as n increases until,
when n = 20, there is no variance reduction at all.

We now provide a slightly more formal introduction to the concept of antithetic sampling of
standard uniform random variables, and explain why this technique can reduce the variance
of estimators when estimates are based on simulated samples. We shall again use an estimator
of a sample mean for illustration.

Denote by {X4, ..., Xy} a sample of N i.i.d. random variables having distribution function
F. Now let {Xi, . X;} denote another sample of N i.i.d. random variables, with the same
distribution function F, and having a constant correlation with the first sample:

corr(X;, X/)=op, fori=1,...,N.

Finally, denote by {X,...,X,y} a set of 2N i.i.d. random variables with distribution
function F.

Consider the estimators of the sample mean based on a sample of size 2N using realizations
from (a) {Xu,.... Xon} and (b) {X1, ..., Xn, X5, ..., X5 }. These are:

~ 1 /2N g
) Xon=5-( 2 X ) an
@ fun= ()
ot (x4 1y X+ X
(b) XzNZ_(ZXHLZXf)=—ZYiWhereY,:_’+ i
2N i=1 i=1 Ni:l

What is the variance of the estimator in each case? Suppose the distribution F has variance o?.
Then in case (a),

N 2No? o2
VXon) = — = — 1V.4.2
( 2N) 4NZ 2N7 ( )
since the variables are independent. However, although the variables Y,,i=1,...,N are
independent their variance is not o2, but
VX, +X*) 20+ 202 21
viyy = At X) 20200 oo
4 4 2
Hence, in case (b),
N 21
V&)= 23T (1V4.3)

2N
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So the variance of the estimator in case (b) will be less than the variance of the estimator in
case () if and only if
*(1+9) o°
— <

2N 2N

)

that is, if and only if o <O.

This shows that a necessary and sufficient condition for antithetic sampling to reduce the
variance of the estimator of a sample mean is that the antithetic variables have negative corre-
lation with the original variables. The antithetic pairs in Example 1V.4.3 were chosen to have
correlation —1.° Then, by (1V.4.3), the variance of the sample mean estimator is zero when we
use the same number of realizations on the antithetic variables as on the original variables.*
This is true for any linear estimator, not just for the sample mean.

In Monte Carlo simulation we often require a non-linear estimator; for instance, we shall
be focusing on an estimator of a quantile. Nevertheless, there is considerable potential for the
use of antithetic pairs to reduce the variance of a Monte Carlo VaR estimate as well.

We now introduce an alternative method for variance reduction, which may be applied in
conjunction with antithetic sampling. The next example provides a simple illustration of the
principle of stratified sampling on the unit interval, after which we generalize this concept to
stratified sampling on the hypercube.

EXAMPLE 1V.4.4: STRATIFIED SAMPLING FROM STANDARD UNIFORM DISTRIBUTIONS

Repeat the exercise from Example 1V.4.3, but this time in case (b) set:

ui/4, i=1,...,5;

(w; +1)/4, i=6,...,10;

(u; +2)/4, i=11,...,15; and
.= (u; +3)/4, i=16,...,20.

S g 8 &

SOLUTION The solution is implemented in the spreadsheet. Note that our construction for
case (b) now generates random numbers in the intervals (0,0.25], (0.25,0.5], (0.5,0.75] and
(0.75,1) respectively. The reader can verify that the standard deviation of the sample means is
exactly ; of the standard deviation of the mean in case (a).

The above example illustrates that by stratifying the sample space (0, 1) into n non-overlapping
subspaces of equal size, the standard deviation of a linear estimator becomes n~* times the
standard deviation of the estimator based on a non-stratified sample. Another advantage is
that when n» is large, stratified sampling can provide a more uniform coverage of the unit
interval than a standard unstratified sampling method.

9 In Section 1V.4.2.5 we see that the antithetic sampling realization (u, 1 — u) on a standard uniform variable translates into a realization
(F~Y(w), F~%1 — u)) where F is the distribution function for our risk factor. But if F is symmetric then F~(1 — u) = —F~Y(u), so we
have a set of antithetic pairs {F~1(u;), —F*i(u,-)}il that still have correlation —1.

10 This is why when we take n = 10 in Example 1V.4.3, each set of simulations has a sample mean of exactly 0.5 and the standard
deviation of the sample means is zero.

1 A linear estimator is an estimator that is a linear function of the random variables.



210 Value-at-Risk Models

A simple way to generalize this concept to multiple dimensions is to use Latin hypercube
sampling. For instance, to generate a stratified sample on the two-dimensional unit cube
(i.e. the unit square) we can create nm simulations on pairs (us, uy) in the unit square by:

(i) taking two independent stratified samples on (0, 1), in each case dividing the interval
into n non-overlapping equal length sub-intervals and taking a random sample size m
from each sub-interval; and

(ii) randomly permuting the first column and, independently, randomly permuting the
second column — i.e. we ‘shuffle up” each sample of m random numbers separately.

EXAMPLE IV.4.5: LATIN HYPERCUBE SAMPLING

Generate two independent stratified samples of the unit interval with n =6, and take a random
sample size m =5 from each sub-interval. Plot the 30 points that are generated in this way in
the unit square. Now ‘shuffle’ each sample of 30 observations independently, and again plot
the 30 points.

SOLUTION In Figure 1V.4.2 the “‘unshuffled’ stratified sample is plotted on the left and the
‘shuffled’ sample is plotted on the right. Clearly, step (ii) above is necessary otherwise all
the points would lie along the diagonal blocks within the unit square, as seen in the left-hand
figure. However, after shuffling the sample is uniformly distributed over the unit square.
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Figure 1V.4.2 Effect of independently permuting stratified samples

Stratified sampling is a useful technique for generating initial values of a simulated process.
For instance, it can be used in one-step Monte Carlo for an h-day VaR, when we are simulating
the h-day risk factor returns directly. But it cannot be used to generate consecutive values along
a simulated path of an i.i.d. process, because the stratification introduces dependence into the
process.'? Hence, it should not be applied to each step in a multi-step Monte Carlo VaR model.

12 For instance, in the above example the first five simulations were all taken from the interval (0, 1/6].
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IV.4.2.4 Sampling from Univariate Distributions

Until this point we have focused on efficient methods for constructing random samples on
standard uniform distributions. Now we show how to transform a random sample from a
single standard uniform variable U into a random sample from a distribution of a random
variable X with a given continuous distribution function, F. Since the values of F lie between
0 and 1, given a random number u in (0, 1) we obtain the corresponding value of x by setting

x=F (). (Iv4.4)

In other words, given a random number u, the corresponding simulation for X is the u quantile
of its distribution.

For example, Figure 1V.4.3 illustrates this transformation in the case of a standard normal
distribution when the random number generated is 0.3.3® Note that given the sigmoid shape
of the distribution function a uniform series of random numbers will be converted into sim-
ulations where more observations occur around the expected value than in the tails of the
distribution.
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Figure 1V.4.3 Simulating from a standard normal distribution

A sample from a standard normal distribution can be translated into a sample from any
other normal distribution using the inverse of the standard normal transformation.** That is,
we obtain a simulation on a normal variable with mean p and standard deviation o using

x=d Hw)o+ 1. (IV.4.5)

More generally, we can use the inverse distribution of any univariate distribution in
the transformation. For instance, in Excel we transform a standard uniform simulation u

13 In Excel, RAND( ) generates a standard uniform simulation and, for instance, NORMSINV(RAND( )) generate